

Writ ten and Il lus trated by

Phoe bus R. Dokos, BSc (Hons)

Ed ited by:
Mike Cadwallader, Uwe Geiken
Darren Grayson, Matt Langley
Da vid Saphier, Paulo Silva
Julian Smith and Steve Smith

With in valu able con tri bu tions by:
Alvin Albrecht, Garry Lan cas ter, So fia Zonidi
Romylos Dokos, Mike Dailly, Si mon Brattel,
D. Rimron, Paul Land, Kev Brady and Si mon N Goodwin

Copy right © 2020 SpecNext Ltd – Lon don, United King dom

This work is li censed un der a CC BY-NC-SA 4.0 In ter na tional Li cense.
http://creativecommons.org/li censes/by-nc-sa/4.0/

Cover Il lus tra tion: Jon a than M Betts (www.artstation.com/jonathanmbettsart)
Cover Lay out: Phoe bus R Dokos (www.dokos-gr.net)

List ings set in:

ZX Spec trum Next Mono type face

Copy right © 2017–2020 by Phoe bus R Dokos

FIRST EDITION

ISBN: 978-1-5272-5496-1

Printed and Bound in Ath ens, Greece – EU by:
Heliotypo S.A. – Graphic Arts
6, Dionyssou str. GR10442
Tel. +30 (210) 515 2217 Fax. +30 (210) 515 3943
Email: iliotypo@otenet.gr

To my amaz ing chil dren: Mikayla and Romylos

Copy rights

Sinclair and ZX Spec trum are copy right © Amstrad/Sky plc and are used un der li cense
Spec trum Next and Sys tem/Next are copy right © SpecNext Ltd
+3e, ResiDOS, IDEDOS, NextZXOS and NextBASIC are copy right © Garry Lan cas ter
TBBLUE is © Vic tor Trucco and Fabio Belavenuto
Zeus is © Neil Mottershead and Si mon Brattel
NextPi is © D. Rimron
ZX-UNO is © The ZX-UNO Team (Superfo,Avillena, McLeod, Quest, Hark0)
divMMC is © Mario Prato
CP/M is © Lineo Inc.
esxDOS is © Miguel Guerreiro / Pa paya Dezign
The ZX80/ZX81 em u la tors are © Paul Far row
Gosh Won der ful and Look ing Glass are © Geoff Wearmouth
ULAplus is © An drew Owen
nxtp and NxTel are © Robin Verhagen-Guest
vDrivezx is © Char lie Ingley
All other names and trade marks used herein are © of their respective authors

Dedication

You’d al ways hear him first. The highly-tuned roar from his
Tri umph TR6 was the first thing that made you aware of
Rick’s ar rival at the copy cen tre – where I worked af ter grad -
u at ing in in dus trial de sign – he’d turn up in these Levi cut-off
shorts. He was cool, a nice guy, in ter est ing and treated you
like an equal. Ev ery one work ing at the copy cen tre loved
serv ing Rick. When the two of us talked, we just clicked – we
spoke the same lan guage. From the de sign pro cess to hu -
man ity, we just seemed to agree on things. Soon, we started
to meet up at Rick’s lo cal pub, the Free Press in Cam bridge.
It was the 1990s, Rick had al ready left Sinclair and had set
up Dickinson As so ci ates on his own. When vis it ing his of fice
in his house I saw his cur rent pro ject on his Alpia draw ing
board. What im pressed me most was how neat and pro fes -
sional his work and office was.

When Rick first em ployed me, I re call he asked if I fan cied
leav ing the copy cen tre and work ing with him. “No guar an -
tees” he said. It took me a nano sec ond to an swer “yes
please!” He did n’t even ask to see my port fo lio. Of course,
he even tu ally went through my work. He re ally liked a water -

col our set I’d done, it was sim ple and fol lowed our phi los o phy of de sign. There were two peo ple who
we both re ally ad mired – one was the grand fa ther of in dus trial de sign, Ray mond Loewy and the other
the fa mous Ger man de signer, Di eter Rams. We moved into an of fice at Burwash Manor, in Barton,
and one of the first things we did was set up a Scalextric track to play on! That’s what it was like
working with Rick.

A typ i cal day would start off at Coeur de France, a café on Bur leigh Street in Cam bridge at about
7.30am, then we’d go to the of fice and work. In the early days we’d work late, of ten fol lowed by piz zas
at 7A Je sus Lane. Or we’d go to the Granta pub for beer. We spent a lot of time to gether. He showed
me how to live a life style, mix ing work and plea sure – and that if you’re go ing to have to work, then
make it as en joy able as you can. It was very im por tant to Rick to man age his own time, so he could live
by that phi los o phy. He al ways said about Cam bridge that it’s the kind of place where you can be on
hol i day per ma nently. He con tin ued that ap proach later in life by work ing from a ski lodge in the Alps
and a beach in Por tu gal. Man ag ing your own time, but still get ting the work done – he val ued that
quality of life and made it work.

Rick taught me a lot, and it started with tech ni cal draw ing. I’d got qual i fi ca tions in tech ni cal draw ing,
but mine com pared to Rick’s at the time looked rub bish. Tech ni cal draw ings then were made with
pen cil on draft ing film, which was very easy to smudge, and my draw ings were re ally smudgy com -
pared to his. He showed me how to keep it clean, how to di men sion and how to get ev ery thing look ing
bal anced. His draw ings were aes thet i cally beau ti ful and just re ally worked out. And that’s where I
started learn ing from Rick, big time. He could al ways see I was ca pa ble – he said I had a good feel for
ma te ri als, and that was some thing we’d dis cussed, he did n’t think you could nec es sar ily teach it. He
thought you were at a huge dis ad van tage if you went on an in dus trial de sign course and you had n’t a
feel ing for ma te ri als and ba sic me chan ics which we both gained dur ing our child hoods by tak ing bi -
cy cles apart and mak ing things like mod els and go-carts. We’d both lived and breathed that all of our
lives.

There’s no de ny ing Rick had nat u ral, raw tal ent, but he al most got kicked off his uni ver sity course.
There was a re quire ment you had to be quite par tic u lar with pre sen ta tion tech niques, which rubbed
him up the wrong way – he did n’t agree with it. So, for ex am ple, not only did you have to draw nice ma -
te rial to show other peo ple your ideas, you had to mount it on foam boards, which he just thought was
a com plete waste of ev ery body’s time! You’re still con vey ing the same idea whether it’s a piece of pa -
per tacked to the wall or you’ve spent half a day mount ing it nicely! And he nearly got chucked off his
course be cause he did n’t want to conform. That was Rick.

Rick and I were re ally close when I was look ing to buy a house in Cam bridge; we spoke about ev ery -
thing. He said, “you need to buy now – if you don’t buy now, you’ll never get on the hous ing mar ket”.
We worked out the price for what I needed, and what a mort gage would be – and then he said, “so
that’s what you’re go ing to have to be paid then. I don’t see it as un rea son able that a prod uct de signer
of some skill and qual i fi ca tion should want to live in the mid dle of Cam bridge”. That shows Rick to me,
and how we were. That was the level of our en gage ment and trust with each other. I also think it shows
friend ship, like a brother look ing out for me. I al ways felt that he was look ing out for my in ter ests. He

Rick Dickinson
(1957 – 2018)

gave me a chance in the first place at prod uct de sign, he showed me pretty much all the im por tant
things I needed to know in or der to prac tise, but also in other ar eas of life, and I’ll never forget that.

He was a great prod uct de signer, but it was largely his ap proach to life – and the way he thought
about ev ery thing. His ap proach to de sign ing a prod uct was al ways well thought out, which is why
peo ple like the prod ucts, be cause it’s ap par ent that the think ing has gone in at ev ery stage, with the
sub tlety and de tail and a clar ity of thought. But he was the same if you asked him to build a wall – his
wall would be better than most pro fes sional brickies’, and he’d know more about it as well. It was the
same with plumb ing, any thing you like. He was what they would have called a Re nais sance man in
the old days – a per son with a thirst for knowl edge who would do ev ery thing to the best of their abil ity.
And there are some peo ple, like Rick, with con sid er able abil ity. There are pho tos of plumb ing he’d
done at his house – it would put most plumb ers to shame. It’s as ton ish ing, it’s a work of art. All
self-taught. He ap plied that to his car res to ra tion of course too – if he did n’t know about some thing,
he’d learn. But he’d also know where to cut cor ners and where to put in most ef fort. So, when you look
at his BMW CSL, once a loved fam ily car he’d drive his chil dren Grace and Daisy about in, to some -
thing which sat as a shell for twenty years, to the res to ra tion he did al most com pletely him self, and fin -
ished in 2017 – it’s just an em bodi ment of him and his per son al ity. He was n’t a pur ist like a lot of
clas sic car peo ple are – Rick was af ter im prove ment not orig i nal ity. He was great at find ing that nice
sweet spot be tween classic roots and modern performance.

The ZX Spec trum Next was a fas ci nat ing pro ject for Rick, and one close to his heart. The op por tu nity
to re visit such iconic work, from some 30 years pre vi ous, is pretty un usual, and to a lot of peo ple – him
in cluded – it’s in cred i bly spe cial. When I look back at the con cept I can re mem ber how we were work -
ing, and he was def i nitely lead ing it in a way he did n’t nor mally. He was very spe cific, me thod i cal
– “let’s do this, let’s try that…” There was lots of toing and froing, get ting it just right. The key board
looks very sim i lar to the QL, and that’s one of my fa vour ite el e ments of it ac tu ally. It looks fan tas tic, but
uses mod ern op er a tion meth ods, so will be a huge im prove ment on the orig i nal – and perhaps
temperamental – Spectrum keyboard!

Rick will be re mem bered for the Sinclair prod ucts be cause they were such a sig nif i cant thing to so
many peo ple. Peo ple started sig nif i cant ca reers on these ma chines and he was a big part of mak ing
them a suc cess – so rightly he gets the credit for that. What made him and his de signs so mem o ra -
ble? Class. Taste. And just a feel for what’s aes thet i cally right. They have the X fac tor – some un quan -
ti fi able ap peal. Peo ple are drawn to these ma chines, and that’s the black art of in dus trial de sign,
they’re more than the sum of their parts. There are many en gi neers who can cre ate a good set of
parts, but to cre ate prod ucts that have time less ap peal and that are loved – this is the dif fi culty of in -
dus trial de sign. You item ise all of the things you’ve got to think about – and there’s a lot of them; these
are com pli cated prod ucts. For that to re sult in some thing like the Spec trum or the ZX81, that is bloody
dif fi cult. And there’s the skill – I don’t know what you call it, I have n’t got a name for it. Rick had the in -
nate skill of a top prod uct de signer. I don’t know how you define it. You can’t do it with words.

In much the same way Rick prob a bly re mem bered Clive Sinclair, I’ll re mem ber Rick as some one who
started my ca reer. It was a sig nif i cant, cat a lytic mo ment of giv ing me a chance when no one else
would. Rick for me is likely the same as Rick is for those cod ers who are so fond of their first ZX81
which started them on their path. I’m the same, but with in dus trial de sign. And it’s prob a bly much
more in tense be cause I worked with him. We did ev ery thing to gether. So, all of the good qual i ties that
they can see in him, I got over a quar ter of a life time, a third of a life time.

I’ve been priv i leged and lucky enough to have had the dream ap pren tice ship, and ul ti mately a ca reer
with some one I’m proud to have called a friend. I learned a col lec tion of things from Rick, but the need
for thor ough ness was one of the most im por tant. And all of the fac ets for prod uct de sign. There’s no
sin gle one that out weighs an other – it’s the jug gling of all of them. That’s how you get the re sult. If you
pri ori tise one over the other, you have n’t done a very good job. It’s the bal ance be tween all of them,
and mak ing sure you’ve ticked all the boxes while do ing it. He was hum ble, me thod i cal, ra tio nal, and
thought things through; ap proach able, open, eas ily un der stood, a Re nais sance man; funny, gen er -
ous and gave praise and en cour age ment. He never thought his work was ex cep tional (it was). He just
wanted to do the best he could un der the cir cum stances (he did). He was en thu si as tic, pas sion ate,
and bal anced work and plea sure – but better still, made work pleasure.

Phil Candy
Cam bridge, May 2018

Foreword
When the idea of the ZX Spec trum Next came about dur ing a chat with my child hood friend Vic tor, nei -
ther of us could dream of the mag ni tude the pro ject would ul ti mately reach, tak ing on a life of its own
and driven by a won der ful com mu nity who, more than three de cades af ter the orig i nal Speccy came
about, re mains as en am oured with it as at first sight.

Sim ply put, the Next would n’t be a “thing” with out the Spec trum com mu nity. Ev ery as pect of the
Next’s mak ing was marked by the fan’s hard work: from the suc cess ful crowdfunding on Kickstarter
(likely the larg est retro-com put ing pro ject ever on the plat form), to its fea tures re quested and de -
signed by orig i nal Spec trum de vel op ers; from the new ex clu sive (and awe some) games to this very
man ual, whose ev ery page came about thanks to the per sis tence and ded i ca tion from a group of
hardcore collaborators.

It’s im pos si ble to frame the ZX Spec trum Next as any thing other than a work of pas sion by many in -
cred i ble peo ple scat tered across the globe and united by the love for all things Speccy. To do them all
jus tice, this in tro duc tion will tell the story of its mak ing marked by each in di vid ual’s credit to the pro -
ject, hope fully wrapped in a nar ra tive that upon read ing, will make you even hap pier to have been a
part of the ZX Spectrum Next’s effort.

And so it hap pened.

The early days

The Speccy was my first com puter. Well, sort of… I grew up in Brazil, and there (like in Rus sia) ex isted
an un of fi cial clone named TK90X. It was the clos est to the real thing one could hope for away from the
orig i nal cra dle in the United King dom. Get ting hold of games was n’t ex actly an easy task, and a short -
fall of those drove me to write my own ti tles. I sold these through guer rilla-style ad verts that I no -
tice-boarded across the neighbourhood.

One of these ads at tracted Vic tor Trucco’s at ten tion, and be ing an other TK90X fan in the small town of
Petrópolis, we soon got in touch and met at my head quar ters (aka my bed room). There I showed him
my early stab at games, all of them surely underwhelming, but enough to start a friend ship that saw us
swap ping tapes, talk ing hard ware and gen er ally be ing our nerdish selves for many, many seasons.

Vic tor has al ways been a wiz ard when it co mes to hard ware. Since his teen age years he has had a
grasp of elec tron ics that is way be yond any thing I could com pre hend, made even more im pres sive by
the fact he is self-taught. I’ll never for get an af ter noon years later when he cob bled to gether an in ter -
face con nect ing my Amiga 500 to a 68040 ac cel er a tor de signed for the A2000 us ing spare parts I had
ly ing around… And it worked on the very first try, even though we had to sol der hun dreds of wires and
a few chips to bridge the two, us ing only the A500 man ual and an A2000 ex pan sion port di a gram
phreaked out of a BBS thousands of miles away.

Our bond with the TK90X was such that, no mat ter what later com put ers we moved on to, we al ways
kept it run ning close by, ready to spring into ac tion with our fa vour ite games.

The precursor

At some point as life went on, our paths di verged. I fol lowed my true call ing for cre at ing games, and
Vic tor his for de sign ing hard ware for all things retro. Chances are, if you are a gam ing col lec tor, you
have one of his de signs around -- from his car tridge in ter faces to all sorts of ex pan sions and hacks for
the Speccy, MSX, ZX81, TRS80, ar cade ma chines and con soles. To say he’s a pro lific chap would be
an understatement.

One of his more re cent pro jects was made in part ner ship with Fabio Bellavenuto, an MSX guru who,
like Vic tor, ded i cates a lot of pre cious time keep ing his be loved ma chines ex panded and work ing well
past their ex pi ra tion dates. Named TBBlue (a porte-man teau name cob bled to gether from Trucco,
Bellavenuto and the col our of the hard ware it self), it was a re place ment board for the Speccy that
added SD card sup port and RGB/VGA out put. It quickly be came a best-seller within the Bra zil ian
TK90X com mu nity, par tic u larly due to Vic tor and Fabio’s con stant up dates that kept ex pand ing its
scope, re ward ing its own ers with a much larger fea ture set than what they originally bought.

The lo cal suc cess of the TBBlue led to an ob vi ous idea: to take it to the United King dom, home to the
larg est and sav vi est Speccy com mu nity on the planet.

By now I had fol lowed (some would say stalked) my child hood idols fea tured in the likes of Your
Sinclair and Crash into the UK, and run a BAFTA-win ning games stu dio in Lon don. Thus Vic tor called
me on a cold De cem ber night in 2015 en quir ing if I could help him and Fabio to man u fac ture the
TBBlue in the Land of Blighty, to get it into the hands of the Brit ish Speccy users.

ZX Spectrum Next – User Manual 7

The early days Foreword

The Next is born

As we talked about the de tails around the TBBlue push, one of us joked it would be amaz ing if, in stead
of a re place ment board, we made an en tirely new ma chine de signed by Rick Dickinson and
crowdfunded it through Kickstarter. The more we laughed at it, the more it seemed like some thing we
should ac tu ally do, and a few days later I was in ter rupt ing Rick’s hol i days in a Swiss ski re sort try ing to
con vince him to join us.

It did n’t take much con vinc ing at all.

We will prob a bly never find out if Rick agreed so readily in or der to get rid of us and re sume his ski ing,
cer tain that it was just a pipe dream from some weirdos that would never fol low through with it, or if he
took us se ri ously from the start. What ever the case, we could n’t be lieve we scored his par tic i pa tion in
the project.

Rick is, as far as we are con cerned, the best in dus trial de signer of our gen er a tion. Per son ally, I think
he gives other world-fa mous de sign ers a run for their money; Rick’s de signs are prac ti cal, time less,
sim ple yet never sim plis tic, and chock-full of per son al ity. Some one once de fined good prod uct de -
sign as “the art of re mov ing ev ery thing that you can pos si bly do with out un til you’re left with the ab so -
lute min i mal”, but this def i ni tion lacks what makes Rick’s work spe cial, a cer tain el e ment that con fers
to it the abil ity to be mem o ra ble from the first glance, able to re sist su per sed ing de cades on. There’s
no com puter from the Speccy’s time that co mes closer to its vi sual ap peal, save for the Plus, the 128
and the Sinclair QL -- all his cre ations. And there are very few computers since, that we can find more
iconic.

While Vic tor and Fabio kept them selves busy work ing to ex pand the TBBlue specs into the Next,
pack ing it with all fea tures we could pos si bly think of in or der to cre ate the ul ti mate Spec trum in a
case, Rick worked se cretly on the pro ject back in Cam bridge. There was lit tle left for me to do other
than put to gether a website and start reach ing out to de vel op ers, en quir ing about their in ter est in cre -
at ing for the platform.

Then one day the case de signs ar rived in our inboxes pro vid ing much jaw-drop ping. Rick had cre ated
not one, but three ZX Spec trum Next con cepts: a mod ern and tiny reimagination that drew more on
the orig i nal rub ber key ver sion, a Plus-in spired com pact ver sion, and a retro-ex panded 128-nod ma -
chine that was the unan i mous choice. It was mod ern and, at the same time, deeply rooted in the
Sinclair leg acy. We could n’t pos si bly imag ine a better de sign, and were left dumb founded with the
task of tell ing him it was sim ply per fect, there was lit er ally no feed back to be given. The Next was cre -
ated in three brush strokes, and that was that.

The road to crowdfunding

All the work done up to this stage would be point less un less a good strat egy was in place to suc cess -
fully take the pro ject to its fans far and wide. This task fell squarely on my shoul ders, but pre sented a
big chal lenge: I have n’t been ac tive within the Speccy com mu nity for years, thus there was a big risk
the ini tia tive would sound il le git i mate and op por tu nis tic. Worse, I could only ded i cate week ends to the
task, as my re spon si bil i ties at the games studio took precedence.

We were faced with the pros pect of try ing to build mo men tum for the Next em ploy ing a starv -
ing-for-time and un known en tity in the driver seat and, need less to say, this did n’t sound like a very
clever prop o si tion.

The an swer came through the won der ful book se ries by Sam Dyer, brains and mus cles be hind
Bitmap Books, the most stun ning pub li ca tions ded i cated to retro com put ing one can lend their gaze
to. Sam had an un in ter rupted track re cord of crowdfunding his cre ations through Kickstarter, and
look ing closely enough there were ref er ences to GamesYouLoved in their cred its as the peo ple co-re -
spon si ble for the successful efforts.

A Twit ter mes sage later, Sam in tro duced Chris Hill from GamesYouLoved, a guy that has since com -
pre hen sively de stroyed my be lief in think ing I knew a thing or two about retro gam ing. With out hes i ta -
tion, Chris helped me nav i gate the best events and chan nels to reach out to the Speccy com mu nity,
and next thing I knew I was on my way to Blackpool to talk about the Next on a stage sandwiched be -
tween Steve Turner of Hewson fame and Jim Bagley, who needs no introduction.

Be fore step ping onto the stage, I man aged to bag Steve’s signed copy of Quazatron by cor rectly
nam ing its pro tag o nist as Klepto even be fore he fin ished ask ing the ques tion. Quazatron is my
all-time fa vour ite game, and there are few hap pier mo ments in my mem ory banks than scream ing the
char ac ter’s name to the top of my lungs to much of Steve’s surprise…

The Next was demoed live us ing a beefed-up TBBlue with a new unreleased firm ware, soon af ter a
brief pre sen ta tion of why a new ver sion of the Spec trum was long due, jus ti fy ing our ef forts in bring ing

8 ZX Spectrum Next – User Manual

 Foreword The Next is born

it into be ing. The live dem on stra tion made all the dif fer ence: see ing it run ning de mos and a few
games in the flesh, ad-hoc, and be ing able to touch it, try ing first hand, pre sented the au di ence with a
tan gi ble pro ject that would not have been achieved in any other way.

Amongst the peo ple ex press ing in ter est was Jim Bagley, the next lined-up speaker. Jim grilled me
with the most in tri cate ques tions, some of which I winged with an swers that would surely make Vic tor
and Fabio cringe and roll into a ball, weep ing. None the less, Jim en quired when he could get a devkit,
and im me di ately one was pro duced from a bag: an Altera DE-1 de vel op ment board with a Rasp berry
Pi Zero as an ac cel er a tor badly sol dered to its ex pan sion pins, the one and only devkit used to test the
firm ware Vic tor and Fabio pro fusely up dated for compatibility validation.

An hour later I was busy on eBay try ing to buy a new Altera board to re place the one I had just given to
Jim in or der to have some thing to keep test ing the firm ware on… This new one also did n’t last long
though: soon it was posted to Jas Aus tin, cre ator of mind-blowingly good-look ing Rex. Af ter this ep i -
sode, as a team we de cided it was time for the first Next pro to type batch to be manufactured.

Thanks to Chris, Jim and Jas, the Next was now known to the Speccy fans, and it car ried the le git i -
macy it re quired to be taken se ri ously.

It does indeed get serious

The TBBlue and Altera kits had run their course, and thus it was time to find a part ner that would be re -
spon si ble for man u fac tur ing the Next pro to type. From the start the idea was to pro duce it in the UK
just like the orig i nal Sinclair, for two rea sons: keep in line with the Brit ish her i tage and use a lo cal com -
pany that would put up with our ad-hoc ap proach to hard ware de vel op ment with min i mal fric tion (ie.
not com plain ing about chang ing some thing yet again and again ev ery time Vic tor and Fabio woke up
with a better idea, which to this day happens surprisingly often).

Af ter much re search and a few ref er ences, we landed at the door step of SMS at Nottingham, a cen -
tury-old Brit ish tech nol ogy com pany that proved to be as smart as they’re lovely. There we met Anita
Brown, whose warm heart can only be matched by her en thu si asm for get ting things done well. With -
out a hitch the first batch of ten Spec trum Next boards were made, dubbed ‘Issue 0’.

Fea tur ing the same Altera FPGA chip as the DE-1 kits that Jim and Jas got early on, the Is sue 0
worked with just a cou ple of patches care fully sol dered on my kitchen worktop, and were soon in the
hands of a few de vel op ers who, at once, started to work on Next pro jects such as Nextipede, by Jon a -
than Cauldwell.

In the mean time, a new board emerged from the com mu nity us ing a Rasp berry Pi to out put HDMI
video from the Speccy called ZX-HD. We al ready had a RPi Zero work ing as a slave ac cel er a tor to the
Next’s Z80, and at once started work ing on en abling its out put video as well, as it made com plete
sense: the VGA stan dard has run its course, and few had the ca pa bil ity to use the Next with a RGB
mon i tor, the two modes it sup ported up to this point.

Soon enough it be came clear there would be lim its to what a video out put from the RPi would be ca -
pa ble of in terms of tim ings, break ing our main tenet of full com pat i bil ity with the orig i nal Speccy. Try
as we might, we could n’t make it 100% com pat i ble with some de mos and games that ex ploited the
ULA in pe cu liar ways, thus quickly Vic tor and Fabio’s at ten tion shifted to im ple ment ing dig i tal out put
straight from the Next’s core and drop ping the Rasp berry Pi for such purpose.

This pre sented a huge di lemma: we wanted the Spec trum Next to be priced just like the orig i nal
Speccy at 175 Brit ish Pounds, but the Altera FPGA was al ready at its limit. In or der to im ple ment dig i tal
out put we would have to up grade to a much more ex pen sive Altera FPGA model, and ex ceed our
price ambitions.

The al ter na tive was to switch the pro ject to Altera’s com pet i tor, Xilinx. This was the same brand that
pow ered the up com ing ZX-Uno, an in cred i ble Span ish pro ject by a tal ented group of de vel op ers,
amongst which was An to nio Villena. Xilinx’s FPGA was just as good and much cheaper, but its in tri ca -
cies were alien to Fabio and Vic tor, who did n’t have ac cess to a devkit based on its technology.

An to nio Villena kindly came to the res cue, and armed with a cou ple of early ver sions of the ZX-Uno,
Vic tor and Fabio man aged to un der stand how the Xilinx FPGA be haved com pared to the Altera. Soon
the Is sue 1 de sign was born and shipped to SMS for pro duc tion fea tur ing an in ter nal im ple men ta tion
of an HDMI con nec tor for our dig i tal out put. By now I should n’t be sur prised by how quickly these
guys un der stood and mi grated their de signs to a brand new plat form, but none the less I was col oured
im pressed once again by their tal ent. It took them less than a month to nail it.

Af ter much test ing of the Is sue 1 (and count less firm ware ver sions) we felt con fi dent about the ca pa -
bil i ties and sta bil ity of the Next hard ware, and for the first time felt a cold shiver run ning through our
spines: it was fi nally time to crowdfund the project.

ZX Spectrum Next – User Manual 9

It does indeed get serious Foreword

Kickstarter rollercoaster

The crowdfunding cam paign felt long due. By con stantly up dat ing the com mu nity with our prog ress
dur ing 2016 and early 2017, we ended up hyp ing the pro ject be yond a healthy point. The memes of
‘take my money’ came thick and fast, keep ing the team buoy ant and smil ing, while al ways fear ful at
the pos si bil ity of drown ing in our dis torted per cep tion of the pro ject’s ap peal. What if we were only
hear ing what we wanted to hear, and there was not even close to the amount of sup port re quired to
make it happen?

By now some of the peo ple who were con tri bu tors be came good friends, and Jim Bagley was the
most prom i nent of them. Jim has done so much to help the pro ject it was high time he be came cred -
ited as an in te gral part of the team, and so it was.

When it was time to get the cam paign’s video done, Jim stepped for ward once again to save the day
and brought with him Lee Bolton from Elerby Stu dios, who trav elled from Man ches ter to Lon don in a
few hours’ no tice, man ag ing to re cord the video that un der pinned the Kickstarter. With a pa tience that
could only be com pared with what’s re quired to deal with Skool Daze’s loader over a badly azimuthed
cas sette player’s head. The amount of times me and Jim messed up each sin gle take was… Let’s just
move on...

With the Kickstarter cam paign up loaded and ready to go, all that was left to do was press the ‘Sub mit’
but ton, which we did with out hes i ta tion. But what fol lowed were the most dis ap point ing and dis tress -
ing mo ments of the en tire project.

Our cam paign got re jected by Kickstarter be cause we were breach ing one of its core rules. We were -
n’t al lowed to use 3D ren dered im ages of the prod uct that looked re al is tic, lest we mis lead the back -
ers into think ing the ren ders were real prod ucts. Rick’s de signs were the beat ing heart of the pro ject,
not be ing able to use them to show case how the fi nal ver sion of the Next would look like felt like a kick
to the stomach.

We tried to rea son with the Kickstarter team: how could they ex pect us to pres ent a real prod uct im -
age, whose mold would cost in ex cess of $80,000.00, which surely de feated the point of
crowdfunding any thing in the first place. If we had eighty thou sand dol lars ly ing about surely we
would n’t need a crowdfunding plat form to begin with.

But Kickstarter did n’t budge. They sent us ref er ence prod uct cam paigns links for us to use as a guide,
some of which turned out to fea ture pre cisely the same kind of 3D ren ders we were found in breach of.
To our amuse ment, when we pointed this out they re plied that if that was the case, it was be cause
they could n’t tell the dif fer ence be tween the ren ders and real pic tures -- in other words, the ren ders on
those live cam paigns were so good they looked real, thus Kickstarter could n’t be sure if they were ren -
ders or not, so they al lowed them to go live while blocking us.

Faced with a Kafka-esque sit u a tion, a Kafka-esque so lu tion was re quired, and be ing game de sign ers
we surely came up with a few: first, Rick ren dered Next im ages in trans par ent ma te rial, show ing be -
yond doubt they were not ‘real prod ucts’. These filled the gap of showcasing the Next’s fea tures such
as SD card and but ton place ments. Mean while my trusty 3D printer en gaged in days-long ef forts to
ex trude black plas tic in thou sands of lay ers that some what re sem bled the Next’s case. The end re sult
posed for a photo fea tur ing my bony hand. Then Jim added a sub ver sive touch: he took a pho to graph
of a mon i tor show ing the orig i nal 3D ren der of the Next. It was a tongue-in-cheek way of dis play ing the
Next de sign with out any chances of some one mis tak ing it for a real image of the physical product.

This, it turned out, was OK. And there was much re joic ing.

Stretching beyond the goals

The Speccy’s 35th birth day was upon us, stars and plan ets aligned into a per fect storm. The cam -
paign went live with a 250,000 GBP goal, which we sus pected had a good chance of not be ing at -
tained. The best case sce nario would be a close call, breached dur ing the last days of the cam paign.
Yet we re sisted the urge to set a lower goal as we knew any thing less would land us in trou ble dur ing
pro duc tion due to econ o mies of scale: the Next was al ready sail ing dan ger ously close to its bud get,
be ing a pro ject done at cost with no profit margin.

Our fears were, of course, un war ranted. Less than 36 hours into the live cam paign, the pro ject was
fully funded.

The ab so lute suc cess of the Spec trum Next caused two side ef fects: Vic tor and Fabio went into over -
drive, com ing up with all sorts of new fea tures with re newed in tent fu eled by the res o nance their cre -
ation had found with the com mu nity; and I had to come up with ever more loft ier stretch goals we
never even both ered pre par ing for, as they seemed far-fetched.

10 ZX Spectrum Next – User Manual

 Foreword Kickstarter rollercoaster

One might think that com ing up with stretch goals is easy: just imag ine what peo ple will want and go
for it. Prob lem is, for each new goal, a huge amount of ac count ing, com po nent pric ing en qui ries, pro -
duc tion ad just ments and the likes had to take place to en sure they were af ford able and vi a ble. And all
this on the fly.

Thank fully, the im mense suc cess of the cam paign brought for ward very spe cial peo ple vol un teer ing
help. The Ol i ver Twins came up with the un be liev able idea of cre at ing a brand new Dizzy ti tle just for
the Next; they added to it DreamWorld Pogie de vel oped by Lyndon Sharp and Phoe bus Dokos; Steve
Wether ill of fered Nodes of Yesod; Jas Aus tin con firmed Rex Next; the team be hind Castlevania led by
Mikhail Sudakov re vealed their new game, No Fate; Garry Lan cas ter started port ing and ex pand ing
his in cred i ble +3e OS for the Next; Alvin Albrech stepped in for Vic tor and took over the core, cre at ing
the amaz ing ma chine you're hold ing in your hands; Juan Moreira of fered his tal ent to de sign a spe cial
box; and Phoe bus Dokos, who started or gan is ing the man ual ef fort, to fi nally be com ing its au thor,
went on to man age the firm ware re leases and the push for the NextZXOS & NextBASIC by Garry…
With out Phoe bus the Next would be a frac tion of its launch form. Our debt to these in cred i ble folks is
in cal cu la ble: they joined the pro ject self lessly, with the one goal of making the Next a better computer
for all.

I owe a per sonal thanks to all these awe some peo ple, and in par tic u lar Mike Cadwallader, who helped
me and the pro ject in more ways than it’s pos si ble to count.

Now, more than ever, it was clear how much love there was for the Speccy: de vel op ers, mak ers, fans
and us ers… All com ing to gether to make it hap pen at a level we could n’t pos si bly have had imag ined
be fore hand with out sound ing out of our minds.

The Spec trum Next was surely big ger than any one could have pre dicted, and it was made better by
its very com mu nity – just like what made the orig i nal Speccy such a huge suc cess back in the day: the
in cred i ble us ers that made its hard ware some thing more, some thing magic.

Henrique Olifiers
Au gust 2018

ZX Spectrum Next – User Manual 11

Stretching beyond the goals Foreword

Ac knowl edge ments

Phoe bus Dokos: The Next User man ual, firm ware/boot lo gos, dis tri bu tion, SD im ages, or gan is ing
more stuff than we can pos si bly track down to thank him for.
Mike Cadwallader: Or gan iser of all things Next, in clud ing pro duc tion of key board, case, main
board… You name it.
Alvin Albrecht: Au thor of the fi nal core and z88dk sup port for Next.
Garry Lan cas ter: Au thor of the beau ti ful NextZXOS, NextBASIC and tons of util i ties that make the
Next tick. An un par al leled tal ent and a great per son all around.
Phil Candy: Part ner of Rick Dickinson at Dickinson As so ci ates, who took the helm af ter Rick left us,
and de liv ered the Next in all its glory.
D. Rimron: au thor of NextPi, the ac cel er a tor OS, host of specnext.dev and all around great guy!
Mitja V. Iskric + Sa rah Bur roughs + Helga Iliashenko + Matt Dol phin, Marcus Chiado: The won -
der ful Admins who kept the com mu nity healthy, happy and on track!
Miguel Guerreiro: Au thor of esxDOS, which for a long time pow ered the Next and still does a great
job of run ning those Rus sian TRD im ages (which we can not in clude sadly! But such is life!)
Darren Grayson, Julian Smith, Matt Langley, Steve Smith, Paulo Silva, Pe ter Hodges, Da vid
Saphier, Uwe Geiken: The Man ual Team! (You know, the stuff you’re read ing right now…)
Mark Smith: Core con tri bu tions.
Si mon Brattel: Core con tri bu tions, As sem bler tools, re mote de bug ging for devs.
Tim Gilberts: For the UART, Mouse, RTC, i2c, WiFi sup port and Internet Tool box (and The Quill and
DAAD and… and...).
Mario Prato: Help and thanks for the divMMC.
Paul Far row: For pro vid ing ZX80 and ZX81 sup port to the Next.
Djordje Mitic: SD Card sup port and pro cure ment in China and Next board com pat i ble cases.
ZX-Uno team: For pro vid ing an early Xilinx core test bed and ex ter nal plat form sup port.
Pokemon: For the “Cap Mod“ hard ware fix for re vi sion 2A Next mainboards.
Geoff Wearmouth: The Gosh Won der ful and Look ing Glass ZX Spec trum 48K ROMS.
Evgeniy Barskiy and Dimitri Ponomarjov: For the EnhancedULA idea that be came the ba sis for the
ex tra col our modes of Lay ers 0 and 1.
Keith Tin man: The KS video mu sic.
Jon a than M Betts: Man ual Cover Art.
Alfredo Tato: Box art work.
Anita Brown, Dimi & Ev ery one at SMS Elec tron ics: For con sis tently go ing above and be yond!
Brian Kiep and his team at Panaseas: For step ping in at the last min ute to cre ate the Spec trum
Next moulds and cases.
Phil, An nie, Chris, Adam, Becky, James, Gill and Lyn: Pen drag on Pack ag ing, mak ers of all the Next
boxes.
Zeb El wood: For pro vid ing ram chips to the com mu nity.
Rich ard Spencer: For help ing se cure the ESP mod ule sour cing and early hard ware add-on pro -
vider.
César Hernández Bañó / ZEsaruX: For the first com plete Next Em u la tor
Mike Dailly: For #CSpect – First Next De vel op ment sys tem / Em u la tor.
Manuel Fernández Higueras: For the wonderful ZX Uno Go+ which served as an early testbed for
Next Core portability!
Matt Davies: For nx – Next Development system / Emulator and WAHH™

Introduction

The ZX Spectrum Next

Diagram Legend

Description # Description

1 Reset 10 Mic/Ear socket

2 divMMC NMI 11 Pi Accel. USB (Use Left port)

3 SD Card slot 12 Stereo Audio out

4 NMI 13 RGB/VGA out

5 9V Power socket 14 PS/2 port

6 Expansion Port 15 Power indicator LED

7 Collapsible Legs 16 Keyboard

8 Digital Video Debug 17 Left Joystick port

9 Digital Video out 18 Right Joystick port

WARNING! WARNING! WARNING! WARNING!
When plugging external interfaces or peripherals, make
sure all power is disconnected first!!!
OTHERWISE IRREPARABLE DAMAGE MAY OCCUR

WARNING! WARNING! WARNING! WARNING!

Right Pi0 USB port marked

with × is a POWER port
and should not be used!

Introduction

Wel come to the ZX Spec trum Next, the evo lu tion of the Sinclair ZX Spec trum line of com -
put ers. It brings new and amaz ing fea tures while keep ing full hard ware and soft ware com -
pat i bil ity with pre vi ous ZX Spec trum com put ers. In fact, you can seamlessly use ex ist ing
pro grams and de vices with your Spec trum Next computer.

What makes the ZX Spec trum Next an evo lu tion is that it brings new hard ware ca pa bil i ties
not seen be fore in the ZX Spec trum line of com put ers. These new fea tures al low for the
cre ation of a whole new level of games and ap pli ca tions that oth er wise would be dif fi cult,
or even im pos si ble, to achieve in pre vi ous gen er a tions of Spectrums.

The most prom i nent of these new ca pa bil i ties are:

• Z80n CPU with extended instruction set and additional turbo modes

• Hardware Sprite engine

• New, high resolution video modes with 9 bit colour and hardware scrolling

• Enhanced audio hardware

• DMA – Direct Memory Access

• Copper-like Hardware

• Enhanced ULA extending legacy Spectrum and Timex modes to 256 colours
out of a 512 colour palette

Be yond these amaz ing fea tures, your new ZX Spec trum Next com puter also in cor po rates
Timex Sinclair video modes, built-in Covox™ / Soundrive™ / SpecDrum™ com pat i ble dig i -
tal au dio, Multiface™ com pat i ble and divMMC in ter faces, and Dig i tal Video out put,
amongst oth ers. There are three dif fer ent ZX Spec trum Next mod els: Stan dard, Plus and
Ac cel er ated. Each one adds a few hard ware com po nents on top of the previous model.

ZX Spectrum Next Standard

This is the base model and has the fol low ing hard ware spec i fi ca tions:

• Xilinx Spartan-6™ SLX16 FPGA (XC6SLX16) implementing:
4 En hanced Z80-com pat i ble CPU (Z80n) @ 3.5 MHz with ad di tional turbo modes
4 divMMC in ter face with an ex ter nal SD™ card slot (Ex pand able to two with a

sec ond ary in ter nal microSD™ slot, only via ex pert sol der ing at user’s own
risk)

4 NextSound™ hard ware (3 x AY-3-89xx com pat i ble PSGs and PCM dig i tal au -
dio with ste reo out put)

4 Multiface™ com pat i ble func tion al ity1

4 ZXN (Z80 DMA com pat i ble) DMA chip
4 En hanced ULA with 9 bit col our ca pa bil ity
4 Amiga™-like Cop per™ chip
4 Pro gram ma ble UART chip

• Two DB9 joystick ports, compatible with Cursor, Kempston™ and ZX Interface 2
protocols

• PS/2 port, with support for Kempston™ compatible mouse mode emulation and
an external keyboard

• 1 MB of SRAM (expandable up to 2 MB)

• RGB/VGA and Digital (HDMI™/DVI compatible) video outputs

• Tape support, through joint Mic / Ear port

• Original external bus expansion port

• Internal accelerator expansion port

ZX Spectrum Next – User Manual 15

ZX Spectrum Next Standard Chapter 1 – Introduction

1 Multiface functionality requires you to own and provide the appropriate ROM file for the model being implemented.
For example for the standard +3e mode you will need to own a Multiface™ 3, extract its ROM image in a file and store
it in the c:/machines/next directory. This is not necessary when running in Next mode, which provides its own
replacement functionality in the form of the NMI menu.

ZX Spectrum Next Plus

This model has all the Stan dard’s fea tures, plus an I2C RTC (Real Time Clock) de vice
(DS-1307) and a Wi-Fi mod ule, with a full TCP/IP stack (ESP8266).

ZX Spectrum Next Accelerated

This model has the same char ac ter is tics as the Plus ver sion, but gets a Rasp berry™ Pi
Zero con nected into the ac cel er a tor ex pan sion port, which gives you one mi cro-USB port
and an ad di tional mini HDMI™ out put. The Rasp berry Pi Zero co mes with a 1 GHz CPU, a
GPU and 512 MB of RAM, and brings yet more pos si bil i ties to your ZX Spec trum Next,
such as sup port ing a sec ond dis play and even more ad vanced graphics processing
power.

Through out this man ual you will learn more about these amaz ing new fea tures and how to
har ness them, so you can make better use of your ZX Spec trum Next com puter.

Setting It Up

For Full Machines

Un pack ing the ZX Spec trum Next, you will have found:
1 This User Man ual.

2 The com puter. This has three jack sock ets (marked 9V DC IN, Au dio Out,
EAR/MIC), two dis play sock ets (Dig i tal Video and RGB/VGA), a PS/2 key -
board/mouse socket, an SD card socket, two joy stick sock ets, and an edge
con nec tor on the back where you can plug in ex tra equip ment. It has no on/off
switch – to turn it on, you just con nect it to the power supply.

3 A power sup ply. This con verts mains elec tric ity into the form that the ZX Spec -
trum Next uses. If you want to use your own power sup ply, it should give 9 volts
DC at 2.1A with pos i tive in the cen tre. DO NOT use an old ZX Spec trum power
sup ply, since that uses in verse po lar ity (neg a tive in the cen tre) un like the ZX Spec -
trum Next.

4 An SD Card pre pro grammed with the sys tem soft ware.

For ZX Spectrum Next Board-Only
5 The board alone.

What you’ll need

For All Next Sys tems:

• A dis play lead. You will need an HDMI™ or VGA dis play lead, which con nects the com puter
to a dis play (tele vi sion or mon i tor). Un like the orig i nal ZX Spec trum, the hard ware of the ZX
Spec trum Next will work with any TV that has an HDMI or DVI2 socket wher ever you are in the
world, in clud ing 50Hz and 60Hz mod els (the de fault se lec tion is 60Hz, but you can change
to 50Hz in the boot menu if your TV/mon i tor ac cepts it). If you are us ing a mon i tor with out an
HDMI™ or DVI socket, you should be able to use the VGA con nec tion in stead. If you’re us ing
a vin tage tele vi sion the VGA port can dou ble-up as an RGB video out port which can be con -
nected us ing a spe cial in ter face ca ble to a stan dard SCART con nec tor. The ZX Spec trum
Next does not sup port dis plays con nected via aerial/UHF.

Ad di tion ally For Next Board Only Sys tems:

• An SD™ Card. You will need an SD card with sys tem files in or der to boot the com puter. You
won’t be able to boot the ma chine with out an ap pro pri ate card in serted into the SD slot as it
car ries the firm ware, the core bitstream (this is the file that con tains the in struc tions for the
FPGA to con fig ure it self for ev ery cir cuit the ZX Spec trum Next sup ports), the Op er at ing Sys -
tem and var i ous sup port ing pro grams and de mos to get you started with your ma chine.
There fore, head over to the dis tri bu tion site on the Spec trum Next Web Por tal

16 ZX Spectrum Next – User Manual

Chapter 1 – Setting It Up ZX Spectrum Next Plus

2 DVI sockets do not carry sound. If you use a DVI socket you will need an HDMI to DVI converter as well as a separate
lead to provide audio to your monitor via the Audio port.

(http://www.specnext.com/latestdistro/) and get the most re cent Sys tem/Next™ dis -
tri bu tion pack age. De pend ing on what type of file you get, be it a disk im age file or an ar -
chive, you should dump the disk im age on a card or un pack the files di rectly into a
FAT16/FAT32 for mat ted SD card. Any size SD card suf fices, as the size of the un packed
dis tri bu tion files fits into even the smallest one available on the market.

• Power Sup ply Unit. You will need a stan dard 9V PSU, cen tre pos i tive, with at least 2.1
Amps of cur rent. Please note that an orig i nal ZX Spec trum, ZX Spec trum+, ZX Spec trum
128K and/or Timex Sinclair TS2068 or TC2048 Power Sup plies are un suit able for the ZX
Spec trum Next as their po lar ity is re versed. If you at tempt to power your ZX Spec trum
Next with such a power sup ply you may dam age your machine.

• PS/2 Key board -or- Spec trum Com pat i ble Case. If you use a board only, or if you are
more com fort able with a larger key board, then you will need a key board com pat i ble with
the PS/2 stan dard. Al ter na tively you can place your ZX Spec trum Next mainboard into
any ZX Spec trum, ZX Spec trum+, ZX Spec trum 128K or com pat i ble key board (eg. a
Saga or DK’Tronics key board) as the board has been en gi neered to fit in a stan dard ZX
Spec trum case. Mi nor cut ting is re quired in the case of standard Spectrum cases.

The com po nents of the sys tem should now be in ter con nected like this:

Turn the power on and switch on the tele vi sion or mon i tor. You now need to switch the tele vi sion to
the ap pro pri ate in put as per the lead you have se lected to use (HDMI, DVI, VGA or SCART). If ev -
ery thing is con nected prop erly and the proper in put se lected, upon first boot you will get a pic ture
like this:

ZX Spectrum Next – User Manual 17

What you’ll need Chapter 1 – Setting It Up

Fig. 1 – Connecting your Next for the first time

Fig. 2 – ZX Spec trum Next Video Mode se lec tion Test Screen

This is the Test Screen and it's there to guide you se lect the best pos si ble video mode for your
dis play. For the first time, al low your com puter to cy cle through all the modes. Not ev ery thing
will be dis play able and your dis play may lose sync dur ing the pro cess pre sent ing you with a
blank screen. This is not cause for worry; not ev ery dis play is ca pa ble of show ing all fre quen -
cies and the pur pose of the Test Screen is to de ter mine ex actly what video mode your dis play
is best suited for. You'll want the Test Screen not to flicker, to ap pear cen tred on your screen
and – if pos si ble – the chequ ered bor der to be com pletely vis i ble and in that or der of pref er -
ence. Note that if you care about com pat i bil ity with older soft ware, the most tim ing-ac cu rate
mode is mode 0 (VGA or RGB) so if you're sat is fied with the qual ity of the dis play on that
mode, you should se lect that one if pos si ble. Once you're sat is fied with the dis play, press
ENTER on the key board. The com puter will store your pref er ence and boot ing will re sume.
The screen will then change to:

be fore fi nally dis play ing the NextZXOS wel come screen:

Read the pages pre sented care fully; they in tro duce NextZXOS and your ma chine and give
you up-to-date in for ma tion on how to do things. They also con tain in for ma tion about The
Browser, Dot Com mands and NextBASIC that may not be in cluded yet in this man ual so
don't dis miss them as non-rel e vant. You nav i gate pages us ing your key board, by press ing
ENTER for Next page and P for Pre vi ous . Once you're done, you can press D to dis able
the wel come screen or you can press SPACE to start.

18 ZX Spectrum Next – User Manual

Chapter 1 – Setting It Up What you’ll need

Fig. 3 – ZX Spec trum Next Booting progress

Fig. 4 – NextZXOS Welcome

Once you press SPACE you will be greeted by the NextZXOS startup screen:

By de fault, the ZX Spec trum Next will boot up in Next Na tive mode, one of the many
modes/per son al i ties that your com puter can be put into. The copy right mes sage you see
in the Next Na tive Mode re sem bles the copy right mes sage of a ZX Spec trum +3 en -
hanced with the +3e disk op er at ing sys tem, of which the ZX Spec trum Next is the logical
successor.

The fol low ing per son al i ties are avail able in the Sys tem/Next™ dis tri bu tion:

• ZX Spectrum 48K

• ZX Spectrum 48K with Gosh Wonderful3 v.3.3 ROM

• ZX Spectrum 48K with Looking Glass4 v.1.07 ROM

• Timex Sinclair TC2048

• ZX Spectrum 128K

• Investronica ZX Spectrum 128K

• ZX Spectrum 128K +2

• ZX Spectrum Next with LG v.1.07 48K Mode

• ZX Spectrum Next with original 48K Mode (default)

• ZX805

• ZX815

You can se lect any of these per son al i ties by hold ing the SPACE key dur ing the boot ing
pro cess of the com puter. Note, how ever, that the newly se lected per son al ity be comes the
sys tem’s de fault, ev ery time you make a new se lec tion. This de fault se lec tion can also be
changed by di rectly ed it ing the con fig u ra tion file config.ini found in the c:/ma chines/next/
folder and mod i fy ing the De fault= en try to re fer to the ap pro pri ate menu en try. Also note,
that menu en tries count from 0.

Ad di tion ally the ZX Spec trum Next can be have as a num ber of Sinclair-in spired and
Sinclair com pat i ble ma chines ac cord ing to the ROM files that you will in clude in the c:/ma -
chines/next/ folder in your Sys tem/Next™ dis tri bu tion's SD card and the con fig u ra tion
changes you make to the stan dard boot con fig u ra tion file config.ini. Es pe cially for the
ZX80 and ZX81 per son al i ties, re gard less of if en tries for these ma chines ex ist in your boot

ZX Spectrum Next – User Manual 19

What you’ll need Chapter 1 – Setting It Up

Fig. 5 – NextZXOS Startup screen

3 Gosh Wonderful is a full text entry ZX Spectrum 48K ROM written and kindly provided by Geoff Wearmouth.
4 Looking Glass is also a full text entry ZX Spectrum 48K ROM written and kindly provided by Geoff Wearmouth.
5 ZX80 and ZX81 personalities include ZX Spectrum 128K emulation software written and kindly provided by Paul

Farrow.

menu, while in Next Na tive mode, soft ware for the ZX80 and ZX81 is sup ported di rectly
from within the Browser and via the SPECTRUM com mand. How ever for this func tion al ity
to work, the spe cial set of ZX80 and ZX81 mod i fied ROM im ages as pro vided in the Sys -
tem/Next™ dis tri bu tion, need to be pres ent in side the c:/ma chines/next/ folder.

When you turn the ZX Spec trum Next off, all the in for ma tion in its mem ory is lost, un less
you save it first. Your ZX Spec trum Next uses mod ern SD mem ory cards to load and save
data, in clud ing tak ing a full snap shot of stan dard 128K and 48K mem ory maps which,
when loaded, will re turn you right back to what you were do ing (even in the mid dle of a
game). Note here, that the snap shot ca pa bil ity does n’t cover the Sprite, Pal ette or Layer2
mem o ries nor the ex tended Spec trum Next mem ory map and/or Cop per in struc tion list
and as such is not suit able for ZX Spec trum Next-spe cific games and soft ware, but only
for tra di tional soft ware or soft ware that’s spe cially writ ten with the snapshot functionality in
mind.

When used in a com pat i ble per son al ity mode, you also have the choice of us ing one the
fol low ing stor age so lu tions:

• ZX Interface 1 with Microdrives or vDriveZX
6

• Rotronics Wafadrives

• Floppy Disk Interfaces

• Hard Disk Interfaces

• Cassette7

Now that you have set up the com puter, you will want to use it. The rest of this book tells
you how to do that; in your im pa tience you will prob a bly al ready have started press ing
keys on the key board, and dis cov ered that things have started hap pen ing on the screen. If
you have pressed ENTER by any chance, you have al ready seen that the copy right mes -
sage and the orig i nal startup menu have dis ap peared and gave way to some other
screen. This is good; you can not harm the com puter in this way. Be bold. Ex per i ment. If
you get stuck, re mem ber that you can al ways re set the com puter to the orig i nal pic ture
with the copy right mes sage by press ing the re set but ton on the left side of the Spec trum
Next or by hit ting the F1 key (if you have an ex ter nal key board). This should be the last re -
sort be cause you lose all the in for ma tion in the com puter's mem ory (but not what's stored
in your SD card).

The Keyboard

By now, you have no ticed that your key board does n't only have char ac ters and sym bols
like other com put ers but also com plete words and com mands. This stems from the orig i -
nal ZX Spec trum char ac ters which com prise not only the sin gle sym bols (let ters, dig its,
etc), but also the com pound to kens (keywords, func tion names, etc) which you can see

20 ZX Spectrum Next – User Manual

Chapter 1 – Setting It Up The Keyboard

For cassette operation, you will need a cassette recorder (preferably monophonic) to
load and save data from tape, just like the original ZX Spectrum. You can even use an
MP3 player or a specialised device such as the TZXduino as a replacement for a
cassette player. To use a cassette recorder you'll also need a mono to stereo splitter
cable with a single 3.5 mm stereo jack plug at one and two 3.5 mm mono jack plugs at
the other end.

For older storage solutions to work, you may need to disable on-board peripherals and
features like the divMMC, NextSound etc as they may clash with your chosen storage
solution. You will also need to select a personality for which the storage solution chosen
was designed for. For example you cannot select the Spectrum +2 personality and
expect a ZX Interface 1 to work as it was never compatible with that machine anyway.

6 vDriveZX made by Charlie Ingley, is a modern replacement for microdrives, fully compatible with all ZX Spectrums that
can use the ZX Interface 1.

7 Cassette is always available regardless of the personality you've chosen.

printed on the Spec trum Next key board. Es pe cially the Keywords are there be cause al -
though the ZX Spec trum Next does n't use them in Next Na tive mode, when us ing one of
the other per son al i ties avail able and/or the orig i nal 48K Mode or even the spe cial USR0
mode (used if you se lect esxDOS8 in stead of NextZXOS) you must use them in order to be
able to give commands.

The Spec trum 128, +2, +3e and Na tive Next modes all have an ad vanced ed i tor to cre -
ate, mod ify and run BASIC pro grams. Ad di tion ally the al ter na tive Na tive Next Mode has
full key board en try in 48K mode thanks to the Look ing Glass 48K BASIC. In the case you're
us ing a board-only ZX Spec trum Next with a PS/2 key board that lacks the Key word leg -
ends, on-screen key board help is pro vided in the form of a menu in the Next Multiface re -
place ment and as the .keyhelp dot com mand.

With the ex cep tion of the Investronica Spec trum 128K ma chine per son al ity, all the 128K
modes have a menu. This man ual, how ever only deals with the Na tive Next modes so it
uses only the menu op tions avail able there. For com plete cov er age of the dif fer ences and
to avoid con fu sion, re fer to Ap pen dix D and the re spec tive man u als of each specific
model.

Special keys and buttons

Through out this man ual, you'll see men tions of func tion keys F1 through F10. These are only
avail able as phys i cal keys on PS/2 (ex ter nal) key boards. This func tion al ity is avail able on the
stan dard key board by press ing AND hold ing the NMI but ton on the left side of your com puter
and one of the nu meric keys (1 through 0). Be low, you will find a ta ble ex plain ing each key's
func tion.

Func tion Key Used for Notes

F1 Hard Reset
Resets CPU and Peripherals, reloads the FW and loads the hardware

settings anew but doesn't clear the RAM.

F2 Scandoubler
Doubles the output resolution. Must be off for older monitors and SCART

cables

F3
50Hz/60Hz Vertical

Frequency
Changes the display's vertical frequency from 50 to 60Hz and vice-versa

F4 Soft Reset

Resets CPU and Peripherals and reloads the Operating System.

Used with Caps Shift it forces a rescan of drives and a reload of the boot

screen under esxDOS

F5 Not Used N/A

F6 Not Used N/A

F7 Scanlines
Cyclically toggles scan line emulation in 4 steps/intensities:

0%, 25%, 50%, 75%. This emulates the older CRT monitors

F8 Turbo modes Cyclically toggles CPU speed (3.5MHz, 7MHz, 14MHz, 28Mhz)

F9 NMI (Multiface) Simulates pressing the NMI button

F10 divMMC NMI (Drive)

Simulates pressing the Drive button (divMMC NMI – used with esxDOS)

Used with Caps Shift it forces a rescan of drives and a reload of the boot

screen under esxDOS

Ta ble 1- Func tion Keys and their use

It's note wor thy also that the Re set but ton on the left side, op er ates dif fer ently ac cord ing to
how it's pressed. A short press (<1 sec) does a Soft Re set while a long press does a Hard
Re set. The NMI but ton is sim i lar as a sin gle press will launch the NMI menu (or multiface
menu if you're in the right per son al ity and own the ap pro pri ate ROM file) while a long press
is used to sim u late the function keys).

ZX Spectrum Next – User Manual 21

Special keys and buttons Chapter 1 – Setting It Up

8 esxDOS is an alternative Operating System for the ZX Spectrum, ZX Spectrum Next and compatible machines such
as the ZX UNO, originally written by Miguel Guerreiro for the divMMC interface. The ZX Spectrum Next requires
esxDOS v.0.8.6beta or higher to operate. NextZXOS provides an esxDOS compatibility layer so programs reliant
upon it do not need its installation to work.

The Startup Menu

Upon startup you will be pre sented with the menu as dis played in Fig. 5 above and if you're a
bit ad ven tur ous and nav i gate around it you'll dis cover a submenu like the one in Fig. 6 be low.

On the bot tom of the screen you will no tice the copy right in for ma tion which also in cludes
the cur rent ver sion of NextZXOS (at the time of writ ing v.2.04). Im me di ately be low you see
in for ma tion on the log i cal drives avail able upon boot. Drive let ters A: and B: (B: is not vis i -
ble on the screen dis played above) de fault to phys i cal floppy disks or un pro tected im ages
(see Chap ter 20 as well as Ap pen dix D), drive C: re fers to the first FAT par ti tion on the SD
Card and drive M: to the RAMdisk. There’s also a spe cial drive let ter T: that’s re served for
tape load ing. All drives with the ex cep tion of T: and C: can be re as signed, as these are
needed for the proper operation of the machine.

The top of the menu in cludes in for ma tion about the cur rent CPU speed9 and the bot tom of
the menu the avail able RAM which is 768K for an un ex pand ed ZX Spec trum Next out of
the to tal 1024K.

The main menu as seen in Fig. 5, con tains the fol low ing items:

• Browser

• Command Line

• NextBASIC

• Calculator

• More...

More… upon se lec tion will open a submenu (Fig. 6) with the fol low ing items:

• Tape Loader

• CP/M

• ROM Cart 48K

• ROM Cart 128K

• 48K BASIC

and fi nally an en try which when se lected will take you back to the pre vi ous menu:

• Back...

22 ZX Spectrum Next – User Manual

Chapter 1 – Setting It Up The Startup Menu

Fig. 6 – NextZXOS Startup Menu

9 The speed displayed, refers always to the execution of NextBASIC programs as the menu itself and the browser
always operate at the maximum available speed, dropping down to the selected speed whenever you execute a
NextBASIC program or code. While in the Menu system, it can be changed by using the left and right cursor keys

Menu Items

Browser – This op tion al lows an easy way to se lect and ex e cute files from the SD card.

Com mand Line – This is the same as the NextBASIC op tion that fol lows, ex cept that any
cur rently res i dent BASIC pro gram is not listed (and can’t be di rectly ed ited, al though you
can still RUN the pro gram, en ter new lines, or de lete them by just en ter ing the line num -
ber). The main pur pose is for us ing disk-re lated com mands such as CAT so that the out -
put can be seen with out be ing con tin u ally re placed by the program listing.

NextBASIC – This op tion en ters the NextBASIC ed i tor in or der to pro gram your ma chine.

Cal cu la tor – This op tion makes your ZX Spec trum Next work as a cal cu la tor (See Ap pen dix E).

Tape Loader – This will start load ing from cas sette.

CP/M – This op tion starts the CP/M 3 (CP/M Plus) op er at ing sys tem. The first time you se -
lect it, you will be taken through an au to mated setup pro ce dure. Fur ther doc u men ta tion
about CP/M can be found un der c:/docs/cpm in your Sys tem/Next™ dis tri bu tion as well
as in Chap ter 20.

ROM Cart 48K – This op tion al lows you to load 48K-mode ROM car tridges plugged in an
ZX In ter face 2, RAM Turbo or Dandanator ex pan sion.

ROM Cart 128K – This op tion al lows you to load spe cial 128K-mode ROM car tridges
plugged in an ZX In ter face 2, RAM Turbo or Dandanator ex pan sion.

48K BASIC – This op tion turns your ZX Spec trum Next into a clas sic ZX Spec trum/+ which
also re quires you to use the key board in the tra di tional, sin gle-key (tokenised) way. In case
you need a slightly up dated ver sion of the 48K sys tem soft ware there is an al ter na tive in
the guise of Geoff Wearmouth's Look ing Glass. This is bug fixed to a great de gree, does
not re quire sin gle-key (tokenised) com mand en try and has en hanced com pat i bil ity with
older soft ware ti tles. This is selectable upon boot by press ing SPACE. For fur ther de tails
re gard ing the 48K mode, re fer to Ap pen dix D and the ZX Spectrum/+ Manual.

Entering and using the NextBASIC Editor

To en ter the ed i tor, se lect the op tion NextBASIC from the Startup menu, us ing the cur sor
keys and ENTER.

Differences from previous versions

The NextBASIC ed i tor largely op er ates as the clas sic Spec trum 128K mod els did with the
no ta ble ex cep tion that it now sup ports apart from the stan dard 32 col umns, 64 and 85 col -
umn modes and ad di tion ally has col our-coded cursors (as de scribed be low) to de note
the mode the ed i tor is in. The 64 and 85 col umn modes, use the Layer 1,2 (HiRes)10 screen
mode and are thus mono chrome. For these modes the cur sor can not be col our-coded so
it changes shape. These are also described below.

When not in 48K mode, all BASIC com mands, func tions and op er a tors are typed let ter by
let ter. Un like in older ver sions, NextBASIC’s cur sor shape and col our in di cate input mode.

There are three things to no tice about the screen.

The cur sor – The cur sor (po si tion of text en try) is a flash ing blue and white rect an gle in the
top left-hand cor ner. If you type any let ters at the key board, then they will ap pear on the
screen at the po si tion of the cur sor. As men tioned above, it has five modes, in di cated by
the cur sor col our (which flashes al ter nately with white) or by the dif fer ent shape ac cord ing
to the screen mode your Next is in:

ZX Spectrum Next – User Manual 23

Menu Items Chapter 1 – Setting It Up

10 Layers 1,2 and 1,3 otherwise known as Timex HiRes (and HiColour) refer to screen modes originally realised in the US
designed Timex Sinclair, ZX Spectrum derivatives which were later adopted by Timex Portugal in their TC line of
computers. All Timex screen modes are fully implemented in the ZX Spectrum Next.

32 col umns
(Col our)

64/85 col umns
(Shape)

Func tion

Blue Horizontal Bar in lower half of character Normal Text Entry

Cyan Horizontal Bar in upper half of character CAPS LOCK on (Toggle with CAPS LOCK key)

Magenta Vertical Bar GRAPHICS mode (Toggle with GRAPHICS key)

Green Horizontal Stripes EXTEND mode (Toggle with EXTEND key)

Red Rectangular Outline Error Marker: There's an error in the line that needs correcting

Ta ble 2 – NextBASIC cur sor colours/shapes and their mean ing

Footer bar – Sec ondly, there is a black bar to wards the bot tom of the screen. This is called
the footer bar, and tells you which part of the com puter’s built-in soft ware you are us ing. At
the mo ment, it says NextBASIC be cause that is the name of the ed i tor.

Sta tus Area – The last item of note is the small lower por tion of the screen. This fits be tween
the footer bar and the bot tom of the screen, and is cur rently blank. It only has room for two
lines of text, and is most of ten used by the ZX Spec trum Next when it de tects an er ror and
needs to print a re port to say so. It does have other uses, how ever, and these will be de -
scribed later.

Other editing keys and special combinations

Aside from the cur sor keys for nav i ga tion and ENTER for se lec tion, there is also the EDIT
key and a se ries of spe cial com bi na tions that are spe cific to NextBASIC.

These are:

• EXTEND,EDIT – Switch between full/lower screen editor (same as choosing
Screen from the edit menu)

• EXTEND,CURSOR LEFT – Move to start of BASIC line

• EXTEND,CURSOR RIGHT – Move to end of BASIC line

• EXTEND,CURSOR UP – Move up 10 screen lines

• EXTEND,CURSOR DOWN – Move down 10 screen lines

• EXTEND,CAPS LOCK – Move to start of program

• EXTEND,GRAPHICS – Move to end of program

• TRUE VIDEO – Move left one word

• INVERSE VIDEO – Move right one word

• EXTEND,TRUE VIDEO – Delete word left

• EXTEND,INVERSE VIDEO – Delete word right

• EXTEND,DELETE – Delete character right

• EXTEND,9 – Delete to start of BASIC line

• EXTEND,0 – Delete to end of BASIC line

Ad di tion ally, ex tended mode sym bols shown be low the keys (ie. ~|\[]{}) can be
en tered ei ther by en ter ing EXTEND mode and then press ing SYMBOL-SHIFT plus the
key, or by just press ing SYMBOL-SHIFT plus the key in nor mal/CAPS modes.

Armed with all this in for ma tion, you’re ready to ex per i ment; now press the EDIT key. You
will no tice two things hap pen – the cur sor van ishes, and a new menu ap pears. This is
called the Edit/Op tions menu.

24 ZX Spectrum Next – User Manual

Chapter 1 – Setting It Up Other editing keys and special combinations

EXTEND key means press and release the EXTEND key (to enter EXTEND mode –
denoted by a Green or Horizontally Striped cursor depending on the screen mode– and
then press the required key)

NextBASIC Options Menu

The Edit/Op tions menu’s in di vid ual op tions are se lected in the same way as for the Startup
menu (by us ing the cur sor keys and ENTER).

NextBASIC – This op tion can cels the Edit menu and re stores the cur sor. On the face of it –
not very use ful; how ever, if EDIT is pressed ac ci den tally, then this op tion al lows you to re -
turn to your pro gram with no dam age done.

Com mand Line – This op tion hides the NextBASIC pro gram cur rently be ing worked on –if
any– clears the screen and al lows you to use the en tire screen as a com mand line in ter -
face to ac cess the file com mands of NextZXOS.

32/64/85 – cy cles be tween the num ber of text col umns avail able in ed it ing mode (with
Layer 1,3 HiRes mode be ing used for 64 or 85 col umns).

Re num ber – NextBASIC pro grams use line num bers to de ter mine the or der of the in struc -
tions to be car ried out. You en ter these num bers (which can be any whole-num ber from 1
to 9999) at the be gin ning of each pro gram line you type in. Se lect ing the Re num ber op tion
causes the NextBASIC pro gram’s line num bers to start at line 10 and go up in steps of 10.
NextBASIC com mands which in clude ref er ences to line num bers (such as GO TO, GO
SUB, LINE, RESTORE, RUN and LIST) also have these ref er ences re num bered ac cord -
ingly. If for any rea son it’s not pos si ble to re num ber, per haps be cause there’s no pro gram
en tered, or be cause Re num ber would gen er ate line num bers greater than 9999, then the
com puter makes a low-pitched bleep and the menu goes away. You can how ever use the
new spe cial ised com mand LINE to renumber your program in different steps.

Screen – This op tion moves the cur sor into the smaller (bot tom) part of the screen, and al -
lows NextBASIC com mands to be en tered and ed ited there. This is most use ful for work -
ing with graphics, as any ed it ing in the bot tom screen does not dis turb the top screen. To

ZX Spectrum Next – User Manual 25

NextBASIC Options Menu Chapter 1 – Setting It Up

Fig. 7 - The NextBASIC Options Menu

The editor screen mode is independent of the mode used by NextBASIC. There fore,
even if you have switched to HiRes mode in the ed i tor, when a NextBASIC com mand or
pro gram is ex e cuted, the mode is changed to what ever was last set by the LAYER
com mand (or to stan dard Spec trum mode if no LAYER com mands have been is sued).
When the com mand/pro gram has fin ished, the mode will switch back to what it's set at.
You can set the editor mode with the SPECTRUM CHR$ command (see Chapter 20).

switch back to the top screen (which you can do at any time whilst ed it ing), se lect the Edit
menu op tion Screen again.

Exit – This op tion re turns you to the open ing menu – the com puter re tains any pro gram
that you were work ing on in the mem ory. If you wish to go back to the pro gram again, se -
lect the op tion NextBASIC from the open ing menu.

If you se lect the open ing menu op tion 48 BASIC (or if you switch off or re set), then any pro -
gram in the mem ory will be lost. (You may, how ever, use the open ing menu op tion Cal cu -
la tor with out los ing a pro gram in the memory.)

The Screen

Un like the orig i nal Spec trum, for pro gram ed it ing or op er at ing sys tem use, the screen can
op er ate in three dif fer ent col umn modes when in Next Na tive Mode. Like the orig i nal ZX
Spec trum this has 24 lines, but with a choice of 32, 64 or 85 char ac ters wide (with the lat ter
only be ing mono chrome), and is di vided into two parts. The top part is at most 23 lines
and dis plays ei ther a pro gram list ing or out put. When print ing in the top part has reached
the bot tom, it all scrolls up one line; if this would in volve los ing a line that you have not had
a chance to see yet, then the com puter stops with the mes sage scroll?. If you're in Layer 0
(the de fault), press ing the keys N, SPACE or CAPS SHIFT + SPACE or BREAK (the lat ter
two are the same thing), will make the pro gram stop with re port D BREAK - CONT re -
peats; any other key will let the scroll ing con tinue. In 64 and 85 col umn modes this is im -
ple mented dif fer ently: A flash ing square in bot tom right de notes you can press any key to
con tinue scroll ing; only CAPS SHIFT + SPACE / BREAK will stop the scroll ing there,
there fore it's the pre ferred way in all modes. The bot tom part is used for in put ting com -
mands, pro gram lines, and input data, and also for displaying reports.

The NextBASIC language

You can im me di ately pro gram your ZX Spec trum Next com puter us ing the BASIC11 lan -
guage, which co mes in three fla vours: The orig i nal 1982 48K, the 1985 128K or the spe -
cial ised NextBASIC one, de pend ing on the per son al ity of the ma chine you choose to use.

At max i mum two of these fla vours can be pres ent at any time.

If you use the ma chine as an orig i nal ZX Spec trum or ZX Spec trum +, you will not get a
boot menu and you will get the 48K BASIC only. If you use the ma chine as an Investronica
ZX Spec trum 128K then you will boot di rectly to 128K BASIC.

128K mod els (in clud ing mod els up to the +3e) will give you 48K and 128K Ba sic and Next
Na tive mode will give you 48K (Stan dard or Look ing Glass) and NextBASIC.

No tice that un less you have dis abled the func tion al ity from the firm ware or the config.ini
file, all of the ZX Spec trum Next’s new fea tures (with some ex cep tions cov ered later on)
are avail able to you by ei ther us ing the spe cial ised NextBASIC com mands, or by us ing the
mech a nism of is su ing IN and OUT com mands to a set of given I/O ports (see more de -
tailed in for ma tion in the Ma chine Code and IN, OUT and the Next Reg is ters Chap ters of
this man ual).

When us ing the NextBASIC in ter preter12, you should be aware that com mands are obeyed
straight away, and in struc tions be gin with a line num ber and are stored away for later. You
should also be aware of the com mands: PRINT, LET, and INPUT (which can be used on

26 ZX Spectrum Next – User Manual

Chapter 1 – Setting It Up The Screen

11 BASIC (acronym which stands for Beginner's All-purpose Symbolic Instruction Code) is a computer language that
makes computer programming easier. The ZX Spectrum Next uses a flavour of BASIC called NextBASIC, written by
Garry Lancaster.

12 An Interpreter in Computer Science denotes a method of execution of a program whereby each command is
"translated" from the language it was written in (in our case NextBASIC) to the machine language the computer
understands in sequential order per command as opposed to a Compiler in which the complete program is first
translated into the machine language and then executed as a whole. Interpreted languages like NextBASIC are easier
to "debug" (that is to correct any potential mistake in our code) but they execute much slower than their compiled
counterparts.

all ma chines that use BASIC), and BORDER, PAPER and BEEP (which are most com -
monly used on Sinclair fla vours of it).

This man ual de tails how to pro gram in NextBASIC, tell ing you ex actly what you can and
can not do.

You will also find some ex er cises at the end of each chap ter. Don’t ig nore these; many, il -
lus trate points that are hinted at in the text. Look through them, and do any that in ter est
you, or that seem to cover ground that you don’t un der stand prop erly.

What ever else you do, keep us ing the com puter. If you have the ques tion "what does it do if
I tell it such and such?" then the an swer is easy: type it in and see. When ever the man ual
tells you to type some thing in, al ways ask your self, "what could I type in stead?", and try out
your re plies. The more of your own pro grams you write, the better you will un der stand the
computer.

Most of the NextBASIC pro gram ming ref er ences and ex am ples in this man ual, also work
with pre vi ous ver sions of Sinclair BASIC, un less noted oth er wise or dis cuss ing spe cific ZX
Spec trum Next features.

At the end of this man ual, there are some ap pen di ces. These in clude sec tions on the way
the mem ory is or gan ised, how the com puter ma nip u lates num bers and a de tailed de -
scrip tion of some of the ZX Spec trum Next features.

Re set the com puter and se lect NextBASIC from the startup menu. Now type in the line be -
low. As you type it in, the char ac ters will ap pear on the screen (a char ac ter is a let ter, num -
ber, space, etc.). Note that to type in the equals sign = you should hold down the
SYMBOL SHIFT key, then press the L key once. Try typ ing in the line:

10 for f=1 to 100 step 10

… then press ENTER. Pro vid ing you have spelled ev ery thing cor rectly, the com puter
should have re printed the line with the words FOR, TO and STEP in cap i tal let ters, like this:

10 FOR f=1 TO 100 STEP 10

The com puter should have also emit ted a short high-pitched bleep, and moved the cur sor
to the start of the next line.

If the line re mains in small let ters and you hear a low-pitched bleep, then this in di cates that
you have typed in some thing wrong. Note also that the col our of the cur sor changes to red
when a mis take is de tected, and you must cor rect the line be fore it will be ac cepted. To do
this, use the cur sor keys to move to the part of the line that you wish to cor rect, then type in
any char ac ters you wish to in sert (or use the DELETE key to re move any char ac ters you
wish to get rid of). When you have fi nally cor rected the line, press ENTER.

Now type in the line be low (The co lon : is ob tained by SYMBOL SHIFT and Z, and the mi -
nus sign - is ob tained by SYMBOL SHIFT and J):

20 plot0,0:draw f,175:plot 255,

0:draw -f,175

… then press ENTER. On the screen you will see:

10 FOR f=1 TO 100 STEP 10

20 PLOT 0,0: DRAW f,175: PLOT

255,0: DRAW -f,175

Don’t worry about line 20 spill ing over onto the next line of the screen – the com puter will
take care of this and align the text so that it is eas ier to read. There is no need for you to do

ZX Spectrum Next – User Manual 27

The NextBASIC language Chapter 1 – Setting It Up

any thing when you ap proach the end of a screen line be cause the com puter de tects this
au to mat i cally and moves the cur sor to the be gin ning of a new line.

The fi nal line of this pro gram to type in is:

30 next f

… again, press ENTER.

The num bers at the be gin ning of each line are called line num bers and are used to iden tify
each line. The line you just typed in is line 30, and the cur sor should be po si tioned just be -
low it. As an ex er cise, we will now edit line 10 (to change the num ber 100 to 255). Press the
ñkey un til the cur sor has moved up to line 10. Now press the ð key un til the cur sor has
moved to the right of 100. Press DELETE three times and you will see the 100 dis ap pear.
Now type in 255 and press ENTER. Line 10 of the pro gram has now been ed ited:

10 FOR f=1 TO 255 STEP 10

The com puter has opened up a new line in prep a ra tion for some new text. Type:

run

Press ENTER and watch what hap pens. Firstly, the footer bar and the pro gram lines are
cleared off the screen as the NextBASIC ed i tor pre pares to hand over con trol to the pro -
gram you’ve just typed in. Then the pro gram starts, draws a pat tern, and stops with the
report:

0 OK, 30:1

Don’t worry about what this re port means.

Press ENTER. The screen will clear and the footer bar will come back, as will the pro gram
list ing. This takes about a sec ond or so, dur ing which time the com puter won’t be tak ing
in put from the key board, so don’t try and type any thing while it’s all hap pen ing.

You’ve just done most of the ma jor op er a tions nec es sary to pro gram and use a com puter!
First, you’ve given the com puter a list of in struc tions. In struc tions tell the com puter what to
do (like the in struc tion 30 NEXT f). In struc tions have a line num ber and are stored away
rather than used when typed in. Then you gave the com puter the com mand RUN to ex e -
cute the stored program.

Com mands are just like in struc tions, only they don’t have line num bers and the com puter
car ries them out im me di ately (as soon as ENTER is pressed). In gen eral, any in struc tion
can be used as a com mand, and vice versa – it all de pends on the cir cum stances. Ev ery
in struc tion or com mand must have at least one key word. Keywords make up the vo cab u -
lary of the com puter, and many of them re quire pa ram e ters. In the com mand DRAW
40,200 for ex am ple, DRAW is the key word, while 40 and 200 are the pa ram e ters (tell ing
the com puter ex actly where to do the draw ing). Ev ery thing the com puter does in
NextBASIC will follow these rules.

Now press EDIT and se lect the Screen op tion. The ed i tor moves the pro gram down into
the bot tom screen, and gets rid of the footer bar. You can only see line 10 of the pro gram
as the rest is hid ing off-screen (you can prove this by mov ing the cur sor up and down).

Press ENTER then type…

run

Press ENTER again, and the pro gram will run ex actly the same as be fore. But this time, if
you press ENTER af ter wards, the screen does n’t clear, and you can move up and down
the pro gram list ing (us ing the cur sor keys) with out dis turb ing the top screen. If you press
EDIT to get the Edit Menu, you might think that this would mess up the top screen. How -

28 ZX Spectrum Next – User Manual

Chapter 1 – Setting It Up The NextBASIC language

ever, the com puter re mem bers what ever’s be hind the Edit menu and re stores it when the
menu is removed.

To prove that the ed i tor re ally is work ing in the bot tom screen, press ENTER and change
line 10 to:

10 FOR f=1 TO 255 STEP 7

… by mov ing the cur sor to the end of line 10 (just to the right of STEP 10), then press ing
DELETE twice, and typ ing 7 (press ENTER).

Now type:

go to 10

(Press ENTER.) The keywords GO TO tell the com puter not to clear the screen be fore
start ing the pro gram. The mod i fied pro gram draws a slightly dif fer ent pat tern on top of the
old one. You may con tinue ed it ing the pro gram to add fur ther pat terns, if you wish.

One thing you may no tice while you’re typ ing away is that CAPS SHIFT and the num ber
keys used to gether do strange things. CAPS SHIFT with 5, 6, 7 and 8 move the cur sor
about, CAPS SHIFT with 1 calls up the Edit Menu, CAPS SHIFT with 0 de letes a char ac -
ter, CAPS SHIFT and 2 is equiv a lent to CAPS LOCK, and fi nally CAPS SHIFT with 9 se -
lects Graphics Mode. All of these func tions are avail able us ing the ded i cated keys on the
Spec trum Next, and so there is no rea son why you should ever want to use the above
CAPS SHIFT and num ber key al ter na tives. They do act how ever in such man ner be cause
of the way the key board is read by the com puter in or der to re tain com pat i bil ity with the
older ZX Spectrum models.

Fi nally (and to round off a per fect in tro duc tory chap ter), in time-hon oured tra di tion ,we
need at least a “Hello World” pro gram. This par tic u lar one was con trib uted by ZX Spec -
trum Next backer, Mr. Si mon Mesure of Lon don, UK.

First type:

NEW

(Press ENTER). You will find your self in the boot screen again. This ba si cally in structs the
com puter to start fresh in or der to let you type in a new pro gram. Se lect NextBASIC and
then type:

10 PRINT AT 11,10;"Hello World"

Press ENTER then type:

run

fol lowed by an other ENTER. This will make the ZX Spec trum Next known to the world with
a happy mes sage lo cated ap prox i mately in the cen tre of the screen ver ti cally and hor i zon -
tally. We'll ex am ine closer the PRINT com mand that makes this pos si ble in Chap ter 15.

Startup Sequence

Ear lier, we ex am ined the very first time your ZX Spec trum Next starts but we did n't see
what hap pens ev ery sub se quent time. A few things change: First the Test Screen does n't

ZX Spectrum Next – User Manual 29

Startup Sequence Chapter 1 – Setting It Up

ap pear au to mat i cally; in stead you get a few sec onds to in voke it as well as the Per son al i -
ties and Con fig u ra tion menu as seen in the fig ure below:

Press ing A, D, V or R will re launch the Test Screen (lat ter three se lec tions are screen
type-spe cific while A will cy cle you through all pos si ble screen modes) while SPACE will
launch the Per son al i ties and Con fig u ra tion which we will ex am ine in Ap pen dix D.

Note here that the R (for RGB) se lec tion, re quires a spe cially-made SCART ca ble as it's
spe cif i cally tai lored to use on Tele vi sion sets. All Test Screen modes emit a beep ing
sound to ver ify sound out put from the dis play you have cho sen. If you can hear sound but
can not see any thing dur ing the Test Screen video mode se lec tion, this means that your
dis play is not ca pa ble of displaying the mode.

If you do not press any thing, the firm ware (TBBLUE.FW lo cated in c:/) will read the con fig -
u ra tion file config.ini lo cated in c:/ma chines/next, ex am ine all the hard ware de vice op -
tions for the per son al ity you've se lected, ap ply all valid ones to that per son al ity and fi nally
launch it as seen in Fig ure 3 ear lier. The boot ing pro cess is also giv ing you in for ma tion re -
gard ing what soft ware is be ing loaded from the ROM files and will mark these as OK to
sig nify that boot ing is pro ceed ing nor mally. In the case you re ceive an er ror prompt, re fer
to the Troubleshooting section of this manual.

30 ZX Spectrum Next – User Manual

Chapter 1 – Setting It Up Startup Sequence

 WARNING! WARNING! WARNING! WARNING! WARNING!

This manual contains references to commands and features that were NOT available at
the time of manufacture. You're therefore strongly advised to update the core and
system software to the latest versions available free of charge from:

 www.specnext.com/latestdistro/

 WARNING! WARNING! WARNING! WARNING! WARNING!

Fig. 8 – The Boot Screen

Basic Programming
Concepts

This page intentionally left blank

Basic Programming Concepts

PRINT, LET, programs and line numbers

Type in these two lines of a com puter pro gram to print out the sum of two num bers:

20 PRINT a

10 LET a=10

so that the screen looks like this:

As you al ready know, be cause these lines be gan with num bers, they were not obeyed im -
me di ately but stored away, as pro gram lines. You will also have no ticed here that the line
num bers gov ern the or der of the lines within the pro gram: this is most im por tant when the
pro gram is run, but it is also re flected in the or der of the lines in the list ing that you can see
on the screen now. So far you have only en tered one number, so type:

15 LET b=15

and press ENTER. It would have been im pos si ble to in sert this line be tween the first two if
they had been num bered 1 and 2 in stead of 10 and 20 (line num bers must be whole num -
bers be tween 1 and 9999), so that is why, when first typ ing in a pro gram, it is good prac -
tice to leave gaps be tween the line numbers.

Variables and Arrays

Be fore we con tinue fur ther, it's use ful to dis cuss what the let ters a and b in the ex am ples
above are called. We call these vari ables be cause they rep re sent lo ca tions in the com -
puter's mem ory where we can tem po rarily store in for ma tion to be re called and used at any
time a pro gram is be ing ex e cuted. NextBASIC can store two types of in for ma tion in mem -
ory: num bers and text. Num bers are fur ther sep a rated – as we will see in length in Chap ter
7 – into float ing point and in te gers. Text vari ables are called strings and they will be dis -
cussed in Chap ter 8. Fur ther more, NextBASIC can group to gether vari ables of the same
type and re fer to them col lec tively. These group ings are called ar rays.

There are some re stric tions in the nam ing and the quan tity of avail able vari ables and ar -
rays as you can see in the fol low ing ta ble ac cord ing to their type. There are also cer tain ad -
van tages (mainly speed) which make the use of in te ger vari ables pref er a ble over the
reg u lar nu meric vari ables de spite their re stric tions1.

ZX Spectrum Next – User Manual 33

Chapter 2 – Basic Programming Concepts PRINT, LET, programs and line numbers

Fig. 9 – Entering program lines in NextBASIC

1 Integer variables in NextBASIC are 16-bit (unsigned or signed). That means that they accept values from 0 to 65535
(or from -32768 to 32767)

In te ger vari ables Nu meric vari ables String Vari ables

Qty Fixed 26 Limited only by memory Maximum 26

Naming
Single character Combination of characters and

numbers. Single character for
loop control

Single Character suffixed by the
$ symbol

Arrays

Fixed 26 with maximum 64
elements (0...63)
Extensible size and dimensions (by
reducing the number of available
arrays)

Maximum 26
(Indices are 1-based)

Maximum 26
(Indices are 1-based)

Ta ble 3 – Types of NextBasic vari ables

Note that in te ger vari ables can only be used within in te ger ex pres sions as we will see in
Chap ter 7 – Ex pres sions. A sin gle let ter vari able name ap pear ing else where is al ways a nu -
meric variable.

Using LIST, RUN and cursors to edit and run programs

Now you need to change line 20 to:

20 PRINT a+b

You could type out the re place ment in full, but it is eas ier to move the cur sor (us ing the cur -
sor keys) to just af ter the a, and then type:

+b (with out ENTER)

The line at the bot tom should now read:

20 PRINT a+b

Press ENTER and it will re place the old line 20, so that the screen looks like this:

Run this pro gram us ing RUN and ENTER and the sum will be dis played (25). Run the pro -
gram again and then type:

PRINT a, b

The vari ables are still there, even though the pro gram has fin ished. If you en ter a line by
mis take, say:

12 LET b=8

it will go up into the pro gram and you will real ise your mis take. To de lete this un nec es sary
line, type:

34 ZX Spectrum Next – User Manual

Chapter 2 – Basic Programming Concepts Using LIST, RUN and cursors to edit and run programs

Fig. 10 – Editing a program

12 (with ENTER of course)

Line 12 will dis ap pear, and the cur sor will ap pear where line 12 used to be.

Now type:

30 (and ENTER)

This time, the pro gram cur sor will ap pear af ter the end of the pro gram (hav ing tried to find
line 30 and failed). If you en ter any line num ber that does not ex ist, the Next will place the
cur sor where it thinks the line would have been if it ex isted. This can be a use ful way of
mov ing around large pro grams, but be ware – it can be very dan ger ous be cause if the line
re ally did ex ist be fore you en tered the num ber, it would n’t ex ist af ter wards (re fer to the line
12 example above)!

To list a pro gram on screen, type

 LIST

and press ENTER. You may wish to list a pro gram from a cer tain point on wards. This can
be achieved by typ ing an ap pro pri ate line num ber af ter the LIST com mand. Try

 LIST 15 (and ENTER)

to see this in ac tion. If, at some point, you find you have n’t left enough space be tween line
num bers then you may use the edit menu to re num ber a pro gram. To do this, press the
EDIT key then se lect the Re num ber op tion from the menu that ap pears; this sets the gap
be tween each line num ber to 10. Try this out and see how the line num bers change.

REM, NEW, INPUT and GO TO

The com mand NEW erases any old pro grams and vari ables in the com puter and starts
the ma chine anew. Try it now; type:

 NEW

and press ENTER. You'll see the Wel come Screen and then the Startup menu. With the
menu on screen, se lect again the NextBASIC op tion.

Care fully type in this pro gram, which changes Fahr en heit tem per a tures to Cel sius:

10 REM Temperature Conversion

20 PRINT "deg F","deg C"

30 PRINT

40 INPUT "Enter deg F", F

50 PRINT F, (F-32)*5/9

60 GO TO 40

Now run it. You will see the head ings printed on the screen by line 20, but what hap pened
to line 10? Ap par ently the com puter has com pletely ig nored it. In deed, REM in line 10
stands for RE Mark and is there solely to re mind you of what the pro gram does. A REM
com mand con sists of REM fol lowed by any thing you like, and the com puter will ig nore it
right up to the end of the line. You'll find more about REM at the end of Chap ter 20.

Using STOP, BREAK and CONTINUE

By now, the com puter has got to the INPUT com mand on line 40 and is wait ing for you to
type in a value for the vari able F – you can tell this be cause at the bot tom of the screen is a
flash ing cur sor. En ter a num ber; re mem ber ENTER. Now the com puter has dis played the
re sult and is wait ing for an other num ber. This is be cause of line 60, GO TO 40, which
means ex actly what it says. In stead of run ning out of pro gram and stop ping, the com puter

ZX Spectrum Next – User Manual 35

REM, NEW, INPUT and GO TO Chapter 2 – Basic Programming Concepts

jumps back to line 40 and starts again. So, en ter an other tem per a ture. Af ter a few more of
these you might be won der ing if the ma chine will ever get bored with this, it won’t. Next
time it asks for an other num ber, en ter the word stop. The com puter co mes back with a re -
port 2 Vari able not found, 40:1, which tells you why it stopped, and where (in the first com -
mand of line 40). If you en ter some sym bol (for ex am ple #) you'll get a dif fer ent re port: C
Non sense in Ba sic.

If you want to con tinue the pro gram type:

CONTINUE

and the com puter will ask you for an other num ber.

When CONTINUE is used the com puter re mem bers the line num ber in the last re port that
it sent you, as long as it was not 0 OK, and jumps back to that line; in our case, this in -
volves jump ing to line 40, the INPUT com mand.

Re place line 60 by GO TO 31 – it will make no per cep ti ble dif fer ence to the run ning of the
pro gram. If the line num ber in a GO TO com mand re fers to a non-ex ist ing line, then the jump
is to the next line af ter the given num ber. The same goes for RUN; in fact RUN on its own ac -
tu ally means RUN 0.

Now type in num bers un til the screen starts get ting full. When it is full, the com puter will
move the whole of the top half of the screen up one line to make room, los ing the head ing
off the top. This is called scroll ing.

When you are tired of this, stop the pro gram as shown above and get the list ing by press ing
ENTER. In a nor mal sit u a tion a user-trig gered pro gram ter mi na tion hap pens af ter press -
ing the BREAK key, how ever since this is an in put line and BREAK ef fec tively is the same
as press ing CAPS SHIFT and SPACE, BREAK will not work. What, will work, is en ter ing a
value that's not ac cepted by the vari able we're in put ting. In this case we're ex pect ing a
num ber and we're en ter ing a word which will be in ter preted as a vari able name (hence er -
ror code 2) whereas a sym bol makes ab so lutely no sense to NextBASIC (there fore the er -
ror code C is produced).

Look at the PRINT state ment on line 50. The punc tu a tion in this – the comma (,) is very im -
por tant, and you should re mem ber that it fol lows much more def i nite rules than the punc -
tu a tion in English.

Com mas are used to make the print ing start ei ther at the left hand mar gin, or in the mid dle
of the screen, de pend ing on which co mes next. Thus in line 50, the comma causes the
Cel sius tem per a ture to be printed in the mid dle of the line. With a semi co lon (;), on the
other hand, the next num ber or string is printed im me di ately af ter the pre ced ing one. You
can see this in line 50, if the comma is re placed by a semicolon.

An other punc tu a tion mark you can use like this in PRINT com mands is the apos tro phe (').
This makes what ever is printed next ap pear at the be gin ning of the next line on the screen
but this hap pens any way at the end of each PRINT com mand, so you will not need the
apos tro phe very much. This is why the PRINT com mand in line 50 al ways starts its print ing
on a new line, and it is also why the PRINT com mand in line 30 pro duces a blank line.

If you want to in hibit this, so that af ter one PRINT com mand the next one car ries on on the
same line, you can put a comma or semi co lon at the end of the first. To see how this
works, re place line 50 in turn by each of:

50 PRINT F,

50 PRINT F;

and:

50 PRINT F

36 ZX Spectrum Next – User Manual

Chapter 2 – Basic Programming Concepts Using STOP, BREAK and CONTINUE

and run each ver sion – for good mea sure you could also try:

50 PRINT F’

The one with the comma spreads ev ery thing out in two col umns, that with the semi co lon
crams ev ery thing to gether, that with out ei ther al lows a line for each num ber and so does
that with the apos tro phe – the apos tro phe gives a new line of its own, but in hib its the
automatic one.

Re mem ber the dif fer ence be tween com mas and semi co lons in PRINT com mands; also,
do not con fuse them with the co lons (:) that are used to sep a rate com mands in a sin gle
line. Now type in these extra lines:

100 REM this polite program

remembers your name

110 INPUT n$

120 PRINT "Hello ";n$;"!"

130 GO TO 110

This is a sep a rate pro gram from the last one, but you can keep them both in the com puter
at the same time. To run the new one, type:

RUN 100

Be cause this pro gram in puts a string in stead of a num ber, it prints out two string quotes –
this is a re minder to you, and it usu ally saves you some typ ing as well. Try it once with any
alias you care to make up for your self.

Next time round, you will get two string quotes again, but you don’t have to use them if you
don’t want to. Try this, for ex am ple. Rub them out (with ð and DELETE twice), and type:

n$

Since there are no string quotes, the com puter knows that it has to do some cal cu la tion:
the cal cu la tion in this case is to find the value of the string vari able called n$, which is
what ever name you hap pen to have typed in last time round. Of course, the INPUT state -
ment acts like LET n$=n$, so the value of n$ is un changed.

The next time round, for com par i son, type:

n$

again, this time with out rub bing out the string quotes. Now, just to con fuse you, the vari -
able n$ has the value "n$".

If you want to stop string in put, you must first move the cur sor back to the be gin ning of the
line, us ing ï and de lete the first set of quotes. Press ing ENTER will pro duce the now fa -
mil iar C Non sense in Ba sic er ror re port and the pro gram will stop.

Now look back at that RUN 100 we had ear lier on. That just jumps to line 100, so could n’t
we have said GO TO 100 in stead? In this case, it so hap pens that the an swer is yes; but
there is a dif fer ence. RUN 100 first of all clears all the vari ables and the screen, and af ter
that works just like GO TO 100.

GO TO 100 does n’t clear any thing. There may well be oc ca sions where you want to run a
pro gram with out clear ing any vari ables; here GO TO would be nec es sary and RUN could
be di sas trous, so it is better not to get into the habit of au to mat i cally typ ing RUN to run a
program.

An other dif fer ence is that you can type RUN with out a line num ber, and it starts off at the
first line in the pro gram. GO TO must al ways have a line num ber.

ZX Spectrum Next – User Manual 37

Using STOP, BREAK and CONTINUE Chapter 2 – Basic Programming Concepts

Both these pro grams stopped be cause you typed a non-ac cept able value in the in put
line; some times – by mis take – you write a pro gram that you can’t stop and won’t stop it -
self. Type:

200 GO TO 200

RUN 200

This looks all set to go on for ever un less you pull the plug out; but there is a less dras tic rem -
edy. Press the BREAK key. The pro gram will stop, say ing L BREAK into pro gram.
At the end of ev ery state ment, the pro gram looks to see if these keys are pressed; and if they
are, then it stops. The BREAK key can also be used when you are in the mid dle of us ing the
cas sette re corder or the printer, or var i ous other bits of ma chin ery that you can at tach to the
com puter – just in case the com puter is wait ing for them to do some thing but they’re not do -
ing it. In these cases there is a dif fer ent re port, D BREAK - CONT re peats. CONTINUE, in
this case (and in fact in most other cases too), re peats the state ment where the pro gram
was stopped; but af ter the re port L BREAK into pro gram, CONTINUE car ries straight on
with the next state ment af ter allowing for any jumps to be made.

Run the name pro gram again and when it asks you for in put type:

 n$ (af ter re mov ing the quotes)

n$ is an un de fined vari able and you get an er ror re port 2: Vari able not found.

If you now type:

LET n$="something definite"

(which has its own re port of 0 OK, 0:1) and:

CONTINUE

you will find that you can use n$ as in put data with out any trou ble.

In this case CONTINUE does a jump to the INPUT com mand in line 110. It dis re gards the re -
port from the LET state ment be cause that said OK, and jumps to the com mand re ferred to in
the pre vi ous re port, the first com mand in line 110. This is in tended to be use ful. If a pro gram
stops over some er ror then you can do all sorts of things to fix it, and CONTINUE will still work
af ter wards.

As we said be fore, the re port L BREAK into pro gram is spe cial be cause af ter it,
CONTINUE does not re peat the com mand where the pro gram stopped.

We've seen so far pro grams where ex e cu tion jumps to the be gin ning with no grace ful way
of end ing the pro gram. What we're pro duc ing are called never-end ing loops and are some
of the great pit falls a pro gram mer can fall in. There are some cases where ex e cu tion can -
not be stopped (if for ex am ple we have dis abled er ror re port ing) or the BREAK key is in -
hib ited. In these cases we have to pro vide with ei ther a clear exit path to the pro gram, or
use a spe cial key word that ends a pro gram pre ma turely and that key word is STOP. Let's
mod ify our polite program to be as follows:

100 REM this polite program

remembers your name

110 INPUT n$

120 PRINT "Hello ";n$;"!"

130 STOP

and then give RUN. Af ter we en ter our name and the com puter greets us, we'll get a 9
STOP state ment, 130:1 re port in di cat ing we ex ited the pro gram forc ibly by the STOP
com mand on line 130. We could have left line 130 out en tirely and the pro gram would have

38 ZX Spectrum Next – User Manual

Chapter 2 – Basic Programming Concepts Using STOP, BREAK and CONTINUE

ter mi nated with a 0 OK, 120:1 which would have in di cated a proper pro gram ter mi na tion.
In gen eral it's a good idea to pro vide exit paths in sit u a tions where the pro gram may end
up in a never-end ing loop; we will learn more tech niques that can help us with such
decisions later on.

Error trapping

As we saw above, NextBASIC can oc ca sion ally gen er ate er ror re ports whether we have in -
ad ver tently caused them our selves or be cause some thing went wrong. Some times we
need our pro gram to stop ex e cu tion and other times we want it to re cover from the er ror
and con tinue (as it is the case above where we gave the CONTINUE com mand). For
these cases, NextBASIC pro vides us with the ON ERROR command.

This can in ter cept (trap) any er ror re port (ex cept 0 OK which is not con sid ered an er ror)
thus al low ing your pro grams to re cover from ex pected er ror conditions.

Turn ing on er ror trap ping is as sim ple as:

ON ERROR statementlist

This will cause the state ments con tained in statementlist af ter the ON ERROR com mand
to be ex e cuted when ever an er ror re port would nor mally have been dis played. Note that
this com mand must be part of a pro gram and can not be en tered as a di rect command.

To turn off er ror-trap ping again, just use ON ERROR on its own with out pa ram e ters

This is re quired if you wish to gen er ate er rors again (and you may wish to do so if you need
to know what went wrong). The fol low ing ex am ple will dis play There was an er ror! and ter -
mi nate with the 9 STOP state ment er ror when line 20 is executed:

10 ON ERROR PRINT "There was

an error!":ON ERROR:STOP

20 PRINT 5/0

To gen er ate the last er ror that ac tu ally oc curred (this does not need er ror-trap ping to be
turned off), just type the com mand:

ERROR

fol lowed by ENTER. As sum ing the pro gram above, the fol low ing amend ment will print the
mes sage but still give the cor rect Num ber too big report:

10 ON ERROR PRINT "There was

an error!":ERROR

20 PRINT 5/0

You can also ob tain de tails of the last er ror us ing the fol low ing com mand:

ERROR TO codevar [[[, linevar], statementvar], bankvar]

This will store the er ror code in the nu meric vari able codevar, the line num ber in linevar, the
state ment num ber in statementvar and the bank num ber in bankvar (do not worry about
what bank means for the mo ment). Note that you do not need to sup ply later vari able
names if you do not need the in for ma tion, so all of these are valid:

ERROR TO e
ERROR TO e,l
ERROR TO e,l,s
ERROR TO e,l,s,b

For ex am ple, to get and store the er ror num ber into vari able e and then print it but still stop
ex e cu tion, we could mod ify the first pro gram as follows:

ZX Spectrum Next – User Manual 39

Error trapping Chapter 2 – Basic Programming Concepts

10 ON ERROR PRINT "There was

an error!": ERROR TO e:

PRINT e: ON ERROR:STOP

20 PRINT 5/0

If we al low the pro gram to fin ish and then use ERROR we would have got ten the 9 STOP
state ment, 10:5 er ror re port which would be the last er ror re port in state ment 5 of line 10
as STOP is con sid ered an er ror. But by us ing ERROR TO, we'll get 6 printed on screen
which is the er ror code for the Num ber too big error

So far we have seen the state ments PRINT, LET, INPUT, RUN, LIST, GO TO,
CONTINUE, STOP, ON ERROR, ERROR, ERROR TO, NEW and REM. Apart from ON
ERROR, you can also en ter them as di rect com mands – this is true of al most all com -
mands in NextBASIC. RUN, LIST, CONTINUE and NEW are not usu ally of much use in a
pro gram, but they can be used re gard less.

Exercises

1. Put a LIST state ment in a pro gram, so that when you run it, it lists it self.

2. Write a pro gram to in put prices and print out the tax due (at 20 per cent). Put in
PRINT state ments so that the com puter an nounces what it is go ing to do, and
asks for the in put price with ex trav a gant po lite ness. Mod ify the pro gram so that
you can also in put the tax rate (to al low for zero rat ings or fu ture changes).

3. Write a pro gram to print a run ning to tal of num bers you in put. (Sug ges tion: have
two vari ables called to tal – set to 0 to be gin with – and item. In put item, add it to
to tal, print them both, and go round again.)

4. What would CONTINUE and NEW do in a pro gram? Can you think of any uses
at all for this?

40 ZX Spectrum Next – User Manual

Chapter 2 – Basic Programming Concepts Error trapping

Decisions

This page intentionally left blank

Decisions

Using IF/THEN to make decisions

All the pro grams we have seen so far have been pretty pre dict able; they went straight
through the in struc tions, and then went back to the be gin ning again. This is not very use -
ful. In prac tice the com puter would be ex pected to make de ci sions and act ac cord ingly.
The in struc tion used has the form: IF some thing is true, or not true, THEN do some thing
different.

For ex am ple, use NEW to clear the pre vi ous pro gram from the com puter and type in and
run this pro gram. (This is clearly meant for two peo ple to play!)

10 REM Guess the number

20 INPUT "Enter the number to

guess", a: CLS

30 INPUT "Guess the number", b

40 IF b=a THEN PRINT "That is

correct": STOP

50 IF b<a THEN PRINT "That is

too small, try again"

60 IF b>a THEN PRINT "That is

too big, try again"

70 GO TO 30

You can see that an IF state ment takes the form:

IF condition THEN …

where the … stands for a se quence of com mands, sep a rated by co lons in the usual way.
The con di tion is some thing that is go ing to be worked out as ei ther true or false; if it co mes
out as true then the state ments in the rest of the line af ter THEN are ex e cuted, but oth er -
wise they are skipped over, and the pro gram ex e cutes the next instruction.

The sim plest con di tions com pare two num bers or two strings: they can test whether two
num bers are equal or whether one is big ger than the other; and they can test whether two
strings are equal, or (roughly) one co mes be fore the other in al pha bet i cal or der. They use
the re la tions =, <, >, <=, >= and <>.

= means equals. Al though it is the same sym bol as the = in a LET com mand, it is used in
quite a dif fer ent sense.

< means is less than so that:
1 < 2
-2 <-1
-3 < 1

are all true, but:
1 < 0
0 <-2

are false.

> means is greater than, and is just like < but the other way round. You can re mem ber
which is which, be cause the thin end points to the num ber that is sup posed to be smaller.

<= means is less than or equal to, so that it is like < ex cept that it is true even if the two
num bers are equal: thus 2<=2 is true, but 2<2 is false.

>= means is greater than or equal to and is sim i larly like >.

ZX Spectrum Next – User Manual 43

Using IF/THEN to make decisions Chapter 3 – Decisions

<> means is not equal to, the op po site in mean ing to =.

Math e ma ti cians usu ally write <=, >= and <> as £, ³ and ¹. They also write things like

2<3<4 to mean 2<3 and 3<4, but this is not pos si ble in NextBASIC.

Line 40 com pares a and b. If they are equal then the pro gram is halted by the STOP com -
mand. The re port at the bot tom of the screen 9 STOP, state ment, 30:3 shows that the
third state ment, or com mand, in line 30 caused the pro gram to halt, i.e. STOP.

Line 50 de ter mines whether b is less than a, and line 60 whether b is greater than a. If one
of these con di tions is true then the ap pro pri ate com ment is printed, and the pro gram
works its way to line 70 which tells the com puter to go back to line 30 and start all over
again. The CLS com mand in line 20 clears the screen to stop the other per son see ing what
you put in.

Note: in some ver sions of BASIC the IF state ment can have the form:

IF condition THEN line number

This means the same as:

IF condition THEN GO TO line number

ELSE

Un like ear lier ZX Spec trum mod els' BASIC in car na tions, NextBASIC al lows for more com -
plex de ci sions to be made by in tro duc ing the ELSE key word. This al lows the com puter to
run an other set of com mands if the IF...THEN test turns out to be false. It is im por tant to
note, un like some other im ple men ta tions of BASIC, ELSE must fol low a colon; for
instance:

IF number<0 THEN PRINT "Negative number":
ELSE PRINT "Positive number"

In the ex am ple above, if the con di tion is true (that is, the num ber is less than zero) then
Neg a tive num ber will be printed. If not, then Pos i tive num ber will be printed on screen.
But what if you for ex am ple wanted a third op tion to tell if the num ber is zero? You could
use the abil ity to “nest” IF...THEN state ments and use the ELSE key word to do so. Lets'
re write the above:

IF number<0 THEN PRINT "Negative number":
ELSE IF number>0 THEN PRINT "Positive
number": ELSE PRINT "The number is zero

You should see in the above that it is pos si ble to ex e cute a fur ther IF...THEN state ment if
the con di tion in the orig i nal one was false. NextBASIC will work through the IF...THEN
state ments un til it finds a con di tion that is true, and will ex e cute that. If no con di tions are
true, then it will at tempt to ex e cute the fi nal ELSE. More than one com mand can be ex e -
cuted within each part of an IF...THEN...ELSE statement also, so:

IF number<0 THEN PRINT "Negative number":
GO TO 100: ELSE IF number>0 THEN PRINT
"Positive number": GO TO 200: ELSE PRINT
"The number is zero" : LET zero = zero+1:
GO TO 300

will al low you to jump to dif fer ent parts of the pro gram de pend ent on the re sults of the
IF...THEN...ELSE state ments; in this case, whether the num ber is neg a tive, pos i tive or
zero (note that if the num ber is zero, one is added to the vari able zero as well).

44 ZX Spectrum Next – User Manual

Chapter 3 – Decisions ELSE

Looping

This page intentionally left blank

Looping

Using FOR, TO and NEXT

Sup pose you want to in put five num bers and add them to gether. One way (don't type this
in un less you are feel ing du ti ful) is to write:

10 LET total=0

20 INPUT a

30 LET total=total+a

40 INPUT a

50 LET total=total+a

60 INPUT a

70 LET total=total+a

80 INPUT a

90 LET total=total+a

100 INPUT a

110 LET total=total+a

120 PRINT total

This method is not good pro gram ming prac tice. It may be just about con trol la ble for five
num bers, but you can imag ine how te dious a pro gram like this to add ten num bers would
be, and to add a hun dred would be just im pos si ble.

Much better is to set up a vari able to count up to 5 and then stop the pro gram, like this
(which you should type in):

10 LET total=0

20 LET count=1

30 INPUT a

40 REM count=number of times

that a has been input so

far

50 LET total=total+a

60 LET count=count+1

70 IF count<=5 THEN GO TO 30

80 PRINT total

No tice how easy it would be to change line 70 so that this pro gram adds ten num bers, or
even a hun dred.

This sort of count ing is so use ful that there are two spe cial com mands to make it eas ier:
the FOR com mand and the NEXT com mand. They are al ways used to gether. Us ing
these, the pro gram you have just typed in does ex actly the same as:

10 LET total=0

20 FOR c=1 TO 5

30 INPUT a

40 REM c=number of times that

a has been input so far

50 LET total=total+a

60 NEXT c

80 PRINT total

(To get this pro gram from the pre vi ous one, you just have to edit lines 20, 40, 60, and de -
lete line 70).

ZX Spectrum Next – User Manual 47

Using FOR, TO and NEXT Chapter 4 – Looping

Note that we have changed count to c. The count ing vari able – or con trol vari able – of a
FOR … NEXT loop must have a sin gle let ter for its name.

The ef fect of this pro gram is that c runs through the val ues 1 (the ini tial value), 2, 3, 4 and 5
(the limit), and for each one, lines 30, 40 and 50 are ex e cuted. Then, when c has fin ished
its five val ues, line 80 is ex e cuted.

STEP

An ex tra sub tlety to this, is that the con trol vari able does not have to go up by 1 each time;
you can change this 1 to any thing you like by us ing a STEP part in the FOR com mand. The
most gen eral form for a FOR com mand is:

FOR con trol vari able = ini tial value TO limit STEP step

where the con trol vari able is a sin gle let ter, and the ini tial value, limit and step are all things
that the com puter can cal cu late as num bers – like the ac tual num bers them selves, or
sums, or the names of nu meric vari ables. So, if you re place line 20 in the program by:

20 FOR c=1 TO 5 STEP 3/2

then c will run through the val ues 1, 2.5 and 4. No tice that you don't have to re strict your self
to whole num bers, and also that the con trol value does not have to hit the limit ex actly – it
car ries on loop ing as long as it is less than or equal to the limit. Try this pro gram, to print
out the num bers from 1 to 10 in re verse order.

10 FOR n=10 TO 1 STEP -1

20 PRINT n

30 NEXT n

We have said be fore that the pro gram car ries on loop ing as long as the con trol vari able is less
than or equal to the limit. If you work out what this would mean in this case, you will see that it
gives non sense. The nor mal rule has to be mod i fied; when the step is neg a tive, the pro gram
car ries on loop ing as long as the con trol vari able is greater than or equal to the limit.

You must be care ful if you are run ning two FOR...NEXT loops to gether, one in side the other.
Try this pro gram, which prints out the num bers for a com plete set of six spot dom i noes.

10 FOR m=0 TO 6

20 FOR n=0 TO m

30 PRINT m;":";n;" ";

40 NEXT n

50 PRINT

60 NEXT m

You can see that the n-loop is en tirely in side the m-loop – they are prop erly nested. What
must be avoided is hav ing two FOR ... NEXT loops that over lap with out ei ther be ing en -
tirely in side the other, like this:

 5 REM this program is wrong

10 FOR m=0 TO 6

20 FOR n=0 TO m

30 PRINT m;":";n;" ";

40 NEXT m

50 PRINT

60 NEXT n

Two FOR ... NEXT loops must ei ther be one in side the other, or be com pletely sep a rate.

48 ZX Spectrum Next – User Manual

Chapter 4 – Looping STEP

}n-loop

}m-loop

}m-loop

}n-loop

An other thing to avoid is jump ing into the mid dle of a FOR … NEXT loop from the out side.
The con trol vari able is only set up prop erly when its FOR state ment is ex e cuted, and if you
miss this out the NEXT state ment will con fuse the com puter. You will prob a bly get an er ror
re port say ing NEXT with out FOR or Vari able not found.

There is noth ing what ever to stop you us ing FOR and NEXT in a di rect com mand. For ex -
am ple, try:

FOR m=0 TO 10: PRINT m: NEXT m

You can some times use this as a (some what ar ti fi cial) way of get ting round the re stric tion
that you can not GO TO any where in side a com mand – be cause a com mand has no line
num ber. For instance:

FOR m=0 TO 1 STEP 0: INPUT a: PRINT a:
NEXT m

The step of zero here makes the com mand re peat it self for ever.

This sort of thing is not re ally rec om mended, be cause if an er ror crops up then you have
lost the com mand and will have to type it in again –and CONTINUE will not work.

For ad di tional speed and ef fi ciency, NextBASIC also al lows in te ger vari ables to be used as
the in dex in FOR … NEXT, eg:

10 FOR %i=%$c9 TO 220

20 PRINT %i

30 NEXT %i

How ever, they can only be used as part of a pro gram, and not on a di rect com mand. Any
at tempt to do this will re sult in a Di rect com mand er ror. This re stric tion al lows in te ger
loops to run much faster than loops us ing a stan dard float ing point in dex vari able, es pe -
cially when loops are used to wards the end of long pro grams. In te ger FOR … NEXT loops
run at the same speed re gard less of where they are lo cated within the pro gram, but stan -
dard FOR … NEXT loops be come pro gres sively slower, the fur ther they are located in the
program listing.

REPEAT ... REPEAT UNTIL loops

NextBASIC has an other way of loop ing: a set of com mands (or rather a sin gle com mand
block) called REPEAT … REPEAT UNTIL. You will have no ticed that FOR … NEXT re lies
on count ing to con trol the loop how ever you can also use a con di tion to con trol a loop.
This type of loop be gins with a REPEAT state ment to in di cate the be gin ning of the loop
and a REPEAT UNTIL state ment at the end, which also con tains the con di tion to exit the
loop. Try this:

10 REPEAT

20 INPUT "Enter a number, or

enter -1 to stop > ";n

30 PRINT n

40 REPEAT UNTIL n=-1

50 PRINT "Thank you!"

This pro gram will keep ac cept ing num bers and print ing them, un til you type -1 when it will
po litely thank you for your num bers. In a REPEAT … REPEAT UNTIL loop, ev ery thing be -
tween the REPEAT and the REPEAT UNTIL com mand will be ex e cuted (in this case, this
would be lines 20 and 30), un til the con di tion in the REPEAT UNTIL state ment proves to
be true (in this case, that the num ber you have en tered is -1). Note that be cause the con di -
tion is checked at the end, the block of state ments will al ways execute at least once.

ZX Spectrum Next – User Manual 49

REPEAT ... REPEAT UNTIL loops Chapter 4 – Looping

The fol low ing, for ex am ple, would print an er ro ne ous state ment:

10 LET x=1

20 REPEAT

30 PRINT "x is ";x;" but it

isn't 1."

40 REPEAT UNTIL x=1

50 PRINT "x is now 1."

Be cause line 30 is ex e cuted be fore the con di tion is checked at line 40, the mes sage x is 1,
but it is n’t 1 will still be printed, which is clearly wrong. Like a FOR … NEXT loop, you can
also nest REPEAT loops, if you need to. So:

10 LET n=1

20 REPEAT

30 PRINT "Counting to ";n

40 LET c=1

50 REPEAT

60 PRINT c;", ";

70 LET c=c+1

80 REPEAT UNTIL c>n

90 PRINT "I'll count a bit

higher"

100 LET n=n+1

110 REPEAT UNTIL n=10

120 PRINT "OK, I’m done now"

will work fine – try it and see if you can see what is hap pen ing. You can also make a
REPEAT loop con tinue in def i nitely, if you use a zero in the REPEAT UNTIL state ment.
Type in this pro gram:

10 REPEAT

20 PRINT "Hello world!"

30 REPEAT UNTIL 0

It will con tinue print ing Hello world! to the screen, stop ping only to ask if you want to scroll
(un less you press the BREAK key, of course). Why? Zero can be seen in NextBASIC as
false when used in this way, so the REPEAT UNTIL 0 state ment will al ways give a false re -
sult; hence the loop will con tinue in def i nitely.

WHILE

The WHILE com mand, used within a REPEAT loop, can pro vide an al ter na tive way of
leav ing the loop be fore reach ing the REPEAT UNTIL state ment. If the con di tion in the
WHILE state ment is true, the loop con tin ues. But if it is false, then the re main ing state -
ments in the loop will be ig nored, the loop will be ex ited and the pro gram will re sume with
the line af ter the REPEAT UNTIL state ment. Try this:

10 REPEAT

20 INPUT "Enter a number, or

enter a negative number to

stop > ";n

30 WHILE n>=0

40 PRINT n

50 REPEAT UNTIL 0

50 ZX Spectrum Next – User Manual

Chapter 4 – Looping WHILE

60 PRINT "Thank you!"

It is a dif fer ent ap proach to the ex am ple seen ear lier, this time us ing WHILE to check the
num ber en tered (and also ac cept ing any neg a tive num ber to stop). WHILE can also be
used to exit a loop be fore any state ments are ex e cuted, should you need to. Try:

10 LET y=0

20 REPEAT : WHILE y<22

30 PRINT AT y,0;"This is line

";y;"."

40 LET y=y+1

50 REPEAT UNTIL 0

You will note that when y reaches 22, the loop will exit be fore print ing the line num ber. It
should also be pointed out that not only can you place a WHILE any where within the loop,
but you can also place more than one WHILE in the same loop, if you have dif fer ent con di -
tions to check to leave the loop.

Error trapping within REPEAT … REPEAT UNTIL loops

Er ror trap ping within REPEAT … REPEAT UNTIL loops as well as within sub rou tines and
pro ce dures is local ised. Re fer to the last sec tion of Chap ter 5 – Local ised Er ror Trap ping
for a com plete ex am ple that cov ers all cases of er ror trap ping in these pro gram ming
structures.

Exercises

1. A con trol vari able has not just a name and a value, like an or di nary vari able, but
also a limit, a step, and a ref er ence to the state ment af ter the cor re spond ing
FOR state ment. Per suade your self that when the FOR state ment is ex e cuted all
this in for ma tion is avail able (us ing the ini tial value as the first value the vari able
takes), and also that this in for ma tion is enough for the NEXT state ment to know
by how much to in crease the value, whether to jump back, and if so where to
jump back to. Run the third pro gram above and then type:

PRINT c

Why is the an swer 6, and not 5? (An swer: the NEXT com mand in line 60 is
ex e cuted five times, and each time 1 is added to c. The last time, c be comes
6; and then the NEXT com mand de cides not to loop back, but to carry on, c
be ing past its limit.)

2. What hap pens if you put STEP 2 in line 20?

3. Change the third pro gram so that in stead of au to mat i cally add ing five num bers,
it asks you to in put how many num bers you want add ing. When you run this
pro gram, what hap pens if you in put 0, mean ing that you want no num bers add -
ing? Why might you ex pect this to cause prob lems for the com puter, even
though it is clear what you mean? (The com puter has to make a search for the
com mand NEXT c, which is not usu ally nec es sary.) In fact this has all been
taken care of.

4. In line 10 of the fourth pro gram above, change 10 to 100 and run the pro gram. It
will print the num bers from 100 to 79 on the screen, and then say scroll? at the
bot tom. This is to give you a chance to see the num bers that are about to be

ZX Spectrum Next – User Manual 51

Error trapping within REPEAT … REPEAT UNTIL loops Chapter 4 – Looping

scrolled off the top. If you press n, BREAK or the space bar, the pro gram will stop
with the re port D BREAK - CONT re peats. If you press any other key, then it will
print an other 22 lines and ask you again.

5. De lete line 30 from the fourth pro gram. When you run the new cur tailed pro gram, it
will print the first num ber and stop with the mes sage 0 OK. If you type:

NEXT n

The pro gram will go once round the loop, print ing out the next num ber.

6. Re fer back to the ex am ple in the REPEAT UNTIL sec tion, where the mes sage x is
1, but it is n’t 1 was dis played in cor rectly. Re write this us ing WHILE so that the
mes sage does not ap pear when x is in deed 1. Change the value of x in line 10 to
check this works correctly.

52 ZX Spectrum Next – User Manual

Chapter 4 – Looping Error trapping within REPEAT … REPEAT UNTIL loops

Procedures
and Subroutines

This page intentionally left blank

Procedures and Subroutines

Branching using GO SUB and RETURN

Some times dif fer ent parts of the pro gram will have rather sim i lar jobs to do, and you will
find your self typ ing in the same lines two or more times; how ever this is not nec es sary.
You can type in the lines once, in a form known as a sub rou tine, and then use – or call –
them any where else in the pro gram with out hav ing to type them in again. To do this, you
use the state ments GO SUB (GO to SUBrou tine) and RETURN. This takes the form:

GO SUB n

where n is the line num ber of the first line in the sub rou tine. It is just like GO TO n ex cept that
the com puter re mem bers where the GO SUB state ment was so that it can come back again
af ter do ing the sub rou tine. It does this by putt ing the line num ber and the state ment num ber
within the line (to gether these con sti tute the re turn ad dress) on top of a pile of them (the
NextBASIC re turn stack – see Chap ter 24 for de tails):

The com mand

RETURN

takes the top re turn ad dress off the GO SUB stack, and goes to the state ment af ter it. As
an ex am ple, let's look at the num ber guess ing pro gram again. Re type it as fol lows:

10 REM "A rearranged guessing

game"

20 INPUT a: CLS

30 INPUT "Guess the number ",b

40 IF a=b THEN PRINT

"Correct": STOP

50 IF a<b THEN GO SUB 100

60 IF a>b THEN GO SUB 100

70 GO TO 30

100 PRINT "Try again"

110 RETURN

The GO TO state ment in line 70 is very im por tant be cause oth er wise the pro gram will run
on into the sub rou tine and cause an er ror (7 RETURN with out GO SUB) when the
RETURN state ment is reached.

Here is an other rather silly pro gram il lus trat ing the use of GO SUB:

100 LET x=10

110 GO SUB 500

120 PRINT s

130 LET x=x+4

140 GO SUB 500

150 PRINT s

160 LET x=x+2

170 GO SUB 500

180 PRINT s

190 STOP

500 LET s=0

510 FOR y=1 TO x

520 LET s=s+y

ZX Spectrum Next – User Manual 55

Branching using GO SUB and RETURN Chapter 5 – Procedures and Subroutines

530 NEXT y

540 RETURN

When this pro gram is run, see if you can work out what is hap pen ing. The sub rou tine starts at line
500.

A sub rou tine can hap pily call an other, or even it self (a sub rou tine that calls it self is re cur -
sive), so don't be afraid of hav ing sev eral layers.

LOCAL keyword

LOCAL is a spe cial key word re served only for sub rou tines (see above) and pro ce dures
(see be low) and what it does, is to en sure that the vari ables that fol low it, are in de pend ent
of the rest of the pro gram and only valid for the du ra tion of the ex e cu tion of the sub rou tine
or pro ce dure. The mo ment that branch ing back oc curs, the vari able is re leased. Con sider
this silly example:

10 LET a$ = "Test"

20 GO SUB 100

30 PRINT a$

40 STOP

100 LOCAL a$

110 LET a$ = "Different Value"

120 PRINT a$

130 RETURN

This will print Dif fer ent Value and Test on your screen thanks to the LOCAL key word
which cre ates in a sense two ver sions of a$. The sec ond one ex ists only un til the RETURN
key word is reached. LOCAL ac cepts up to 256 vari ables; reg u lar nu meric, in te ger and
string vari ables are ac cepted. There can be any num ber of LOCAL state ments in a sub -
rou tine or pro ce dure as long as there is enough memory for them.

Procedures (DEFPROC / ENDPROC / PROC)

Pro ce dures are a spe cial form of sub rou tines. Imag ine them as a cross of sub rou tines and
func tions (See Chap ter 9 – Func tions). Like sub rou tines and the GO TO key word they
branch ex e cu tion to a dif fer ent seg ment of the pro gram to better or gan ise and re use
code, how ever un like sub rou tines but like func tions, they can ac cept up to 8 vari ables as
pa ram e ters, can be named and when called they do not require a line number.

Pro ce dure pa ram e ters can be reg u lar nu meric, in te ger and string vari ables which fol low all
the nam ing con ven tions of the for mer (As seen in Chap ters 2 – Ba sic Pro gram ming Con -
cepts and 7 – Ex pres sions) but can not ac cept ar rays (See Chap ter 12 – Ar rays).

Un like func tions which can only ac cept a sin gle let ter for a name, pro ce dures can carry
mean ing ful names fol low ing the nam ing con ven tions of nu meric vari ables (See Chap ter 7
– Ex pres sions for valid nu meric variable names).

Pro ce dures are de fined by the keywords DEFPROC which takes the form:

DEFPROC name ([parameter1[,...[, parameter8]]])

and ENDPROC which takes one of two forms:

ENDPROC

or –op tion ally–

ENDPROC =result1[,...,result8]

Any thing that fol lows the key word DEFPROC is the pro ce dure it self, how ever there can be
mul ti ple exit points for each pro ce dure des ig nated by sep a rate ENDPROC statements.

56 ZX Spectrum Next – User Manual

Chapter 5 – Procedures and Subroutines LOCAL keyword

Pa ram e ters in brack ets, de note that the syn tax is op tional. Pro ce dures are called with the
key word PROC (and BANK PROC in the case of a banked pro ce dure). This, like
ENDPROC takes two forms:

[BANK n] PROC name ([parameter1[,...[,parameter8]]])

which calls the pro ce dure named name with op tional pa ram e ters 1 through 8 –or–

[BANK n] PROC name ([parameter1[,...[,parameter8]]]) TO variable1[,...,variable8] which
is the same as above but as signs the val ues re turned by the pro ce dure to the op tional
vari ables 1 through 8.

Con sider the ex am ple be low:

10 CLS

20 PROC Pdemo(11): PROC

HelloWorld("Hello

World!",1)

30 PROC HelloWorld("Hello

Stop!",0)

40 GO TO 160

50 DEFPROC Pdemo(x)

60 PRINT x; " risen to the 2nd

power is:"; x*x

70 ENDPROC

80 DEFPROC HelloWorld(z$, n)

90 LOCAL a$,l

100 IF n=0 THEN PRINT z$:

ENDPROC

120 IF n=1 THEN LET l=LEN z$

130 LET a$=z$(l)+z$+z$(l)

140 PRINT z$' INVERSE 1; a$

150 ENDPROC

160 STOP

This will re turn the fol low ing:

As you can see, there are two sep a rate exit points for pro ce dure HelloWorld, one at line
100 and one at line 150. Line 40 is man da tory, or rather a con di tion to jump over the pro ce -
dures de fined is man da tory as with out it, af ter ex e cu tion of both pro ce dures the next avail -

ZX Spectrum Next – User Manual 57

Procedures (DEFPROC / ENDPROC / PROC) Chapter 5 – Procedures and Subroutines

Fig. 11 - Screen output from the example procedures

able line would have been 50. DEFPROC can only ap pear in a pro gram line. At tempt ing to
de fine a pro ce dure in ter ac tively will re sult in the er ror Di rect Com mand Er ror.

Sup ply ing the wrong type of vari able as a pa ram e ter (ie. a string in stead of a num ber) will
re sult in the er ror: Q Pa ram e ter er ror.

As we saw in the def i ni tion of the DEFPROC, ENDPROC and PROC keywords, there are
op tional pa ram e ters that can be passed to pro ce dures when called with the re sults of the
pro ce dures' ex e cu tion be ing as signed to up to 8 vari ables at the time. Con sider this ex am -
ple that cal cu lates the fac to rial of a number:

10 INPUT "Enter a number

1+:";x

20 IF x>33 THEN PRINT "Your

Next cannot handle this

number!": GO TO 999

30 PROC factorial(x) TO f

40 IF f>0 THEN PRINT "The

factorial of ";x;" is ";f:

ELSE GO TO 999

999 STOP

1000 DEFPROC factorial(n)

1010 IF n<0 OR n<> INT n THEN

PRINT "Factorial only

possible for 0 or positive

integers":ENDPROC =

-1:ELSE

IF (n = 0 OR n=1)

THEN ENDPROC =1

1020 LOCAL partial

1030 PROC factorial(n-1) TO

partial

1040 ENDPROC =n*partial

Apart from a good ex am ple of re cursion (the abil ity of the code to call it self) we can see
how this pro ce dure feeds it self the re sults of the pre vi ous it er a tion via the lo cal vari able
par tial. Each it er a tion re duces the value by 1 as ev i denced in line 1030. There's an ob vi ous
ex tra it er a tion that could be skipped when n be comes 1 but it's not im por tant for the
purpose of this example.

When call ing a pro ce dure with the PROC ... TO... ver sion of the PROC key word,
ENDPROC must use the op tional form ENDPROC =result1... and have as many re sults
re turned (sep a rated by com mas) as the call ing PROC re quested. PROC may be called
with out a TO or with a par tial list of the re sult vari ables re turned by ENDPROC but the in -
verse can not hap pen and will re turn er ror Q Pa ram e ter er ror. For example this program:

10 LET product = 0

20 PROC mul(3) TO product

30 PRINT product

40 STOP

50 DEFPROC mul(x)

60 LOCAL a

80 LET a=x*2

90 ENDPROC =a

58 ZX Spectrum Next – User Manual

Chapter 5 – Procedures and Subroutines Procedures (DEFPROC / ENDPROC / PROC)

will re turn 6 when run. When we change line 20 to read:

20 PROC mul(3)

it will re turn 0 as vari able prod uct has n't been changed from its ini tial as sign ment, how -
ever if we re turn line 20 to its orig i nal form and change line 70 to:

70 ENDPROC

then ex e cu tion of the pro gram will pro duce a Q Pa ram e ter er ror.

Localised error-trapping

As well as (or in stead of) hav ing a global er ror-trap ping rou tine for your pro gram as ex hib -
ited at the end of Chap ter 2, each pro ce dure, sub rou tine and re peat loop may have its own
lo cal er ror-trap ping rou tine, sim ply by us ing the ON ERROR com mand within it.

When an er ror oc curs within a re peat loop, sub rou tine or pro ce dure, it will be trapped by
its own ON ERROR rou tine if there is one. If not, the er ror will be passed out to the next
level and trapped by any ON ERROR rou tine there and so on. Only if there is no ON
ERROR at any level above the com mand that caused the er ror will a nor mal er ror re port be
gen er ated. For example:

10 ON ERROR PRINT "Outer error

handler!":ERROR

20 REPEAT

30 PRINT "Starting..."

40 ON ERROR PRINT "Oops!":ON

ERROR:STOP

50 GO SUB 100

60 PRINT "Iterating..."

70 ON ERROR

80 REPEAT UNTIL 0

90 STOP

100 ON ERROR PRINT "Bad

pigs!":RETURN

110 PROC myproc()

120 PRINT "Pigs:";pigs

130 RETURN

200 DEFPROC myproc()

210 LOCAL m

220 ON ERROR PRINT "Myproc

died...":ENDPROC

230 PRINT "m=";m,"n=";n

240 ENDPROC

ZX Spectrum Next – User Manual 59

Localised error-trapping Chapter 5 – Procedures and Subroutines

If you're using the NextBASIC's memory bank management facilities to extend the size of
your programs, the following apply:

1. Any GO TO, PROC or GO SUB within a banked section will go to a line in the same
 bank.

2. Any RETURN will always return to the calling bank.

Note that in REPEAT loops it is im por tant to turn off any lo cal er ror han dling for that loop
be fore the REPEAT UNTIL is ex e cuted. If not, the loop start can not be found and a Loop
er ror would re sult (and be trapped by the loop's own er ror han dler). Re mov ing line 70 in
the ex am ple above would dem on strate this.

Also note that any LOCAL com mands in a pro ce dure or sub rou tine must come be fore a
lo cal er ror han dler (ie lines 210 and 220 in the ex am ple can not be reversed).

60 ZX Spectrum Next – User Manual

Chapter 5 – Procedures and Subroutines Localised error-trapping

READ, DATA
RESTORE

This page intentionally left blank

READ, DATA, RESTORE

READ, DATA and RESTORE

In some pre vi ous pro grams we saw that in for ma tion, or data, can be en tered di rectly into
the com puter us ing the INPUT state ment. Some times this can be very te dious, es pe cially
if a lot of the data is re peated ev ery time the pro gram is run. You can save a lot of time by
us ing the READ, DATA and RESTORE com mands. For example:

10 READ a,b,c

20 PRINT a,b,c

30 DATA 10,20,30

A READ state ment con sists of READ fol lowed by a list of the names of vari ables, sep a -
rated by com mas. It works rather like an INPUT state ment, ex cept that in stead of get ting
you to type in the val ues to give to the vari ables, the com puter looks up the val ues in the
DATA state ment.

Each DATA state ment is a list of ex pres sions – nu meric or string ex pres sions sep a rated
by com mas. You can put them any where you like in a pro gram, be cause the com puter ig -
nores them ex cept when it is do ing a READ. You must imag ine the ex pres sions from all
the DATA state ments in the pro gram as be ing put to gether to form one long list of ex pres -
sions, the DATA list. The first time the com puter goes to READ a value, it takes the first ex -
pres sion from the DATA list; the next time, it takes the sec ond; and thus as it meets
suc ces sive READ state ments, it works its way through the DATA list. (If it tries to go past
the end of the DATA list, then it gives an error.)

Note that it's a waste of time putt ing DATA state ments in a di rect com mand, be cause
READ will not find them. DATA state ments have to go in the pro gram. Let's see how these
fit to gether in the pro gram you've just typed in. Line 10 tells the com puter to read three
pieces of data and give them the vari ables a, b and c. Line 20 then says PRINT these vari -
ables. The DATA state ment in line 30 gives the val ues of a, b and c. To see the or der in
which things work change line 20 to:

20 PRINT b,c,a

The in for ma tion in DATA can be part of a FOR...NEXT loop. Type in:

10 FOR n=1 TO 6

20 READ d

30 DATA 2,4,6,8,10,12

40 PRINT d

50 NEXT n

When this pro gram is RUN you can see the READ state ment mov ing through the DATA
list. DATA state ments can also con tain string vari ables. For ex am ple:

10 READ d$

20 PRINT "The date is",d$

30 DATA "January 1st, 2019"

40 STOP

This is the sim ple way of fetch ing ex pres sions from the DATA list; start at the be gin ning
and work through un til you reach the end. How ever, you can make the com puter jump
about in the DATA list, us ing the RESTORE state ment. This has RESTORE, fol lowed by a
line num ber, and makes sub se quent READ state ments start get ting their data from the

ZX Spectrum Next – User Manual 63

READ, DATA and RESTORE Chapter 6 – READ, DATA, RESTORE

first DATA state ment at or af ter the given line num ber. (You can miss out the line num ber,
in which case it is as though you had typed the line num ber of the first line in the program.)

Try this pro gram:

10 READ a,b

20 PRINT a,b

30 RESTORE 10

40 READ x,y,z

50 PRINT x,y,z

60 DATA 1,2,3

70 STOP

In this pro gram the data re quired by line 10 made a=1 and b=2. The RESTORE 10 in -
struc tion re set the vari ables, and al lowed x, y and z to be READ start ing from the first num -
ber in the DATA state ment. RUN this pro gram again, with out line 30 and see what
happens.

64 ZX Spectrum Next – User Manual

Chapter 6 – READ, DATA, RESTORE READ, DATA and RESTORE

You can store DATA statements in memory banks to take advantage of the expanded
memory available on the ZX Spectrum Next. Refer to Chapter 24 – The Memory, for
information on how to do this.

READ, DATA and RESTORE accept integer variables following the conventions set
forth in Chapter 7 – Expressions.

Expressions

Expressions

Mathematical operations +, - , * , /, MOD

You have al ready seen some of the ways in which the ZX Spec trum Next can cal cu late with
num bers. It can per form the four arith me tic op er a tions +, -, * and / (re mem ber that * is
used for mul ti pli ca tion, and / is used for di vi sion), and it can find the value of a vari able,
given its name. The example:

 LET tax=sum*20/100

gives just a hint of the very im por tant fact that these cal cu la tions can be com bined. Such a
com bi na tion, Iike sum*20/100, is called an ex pres sion; so an ex pres sion is just a short -
hand way of tell ing the com puter to do sev eral cal cu la tions, one af ter the other. In our ex -
am ple, the ex pres sion sum*20/100 means look up the value of the vari able called "sum",
mul ti ply it by 20, and di vide the re sult by 100.

There's also one more math e mat i cal op er a tion, the modulo which re turns the re main der of
a di vi sion. It is used in the same way as the di vi sion op er a tor but is de noted in stead by
MOD. Modulo op er a tors can only be used within an in te ger ex pres sion. As an ex am ple
the direct command:

PRINT %17 MOD 6

will re turn 5 which is the re main der of the di vi sion of 17 by 6; note the per cent sym bol (%)
that pre fixes 17, this is what de fines it as an In te ger Ex pres sion – We will look at this in a
little bit.

To re cap the or der in which math e mat i cal ex pres sions are eval u ated: mul ti pli ca tions and
di vi sions are done first. They have higher pri or ity than ad di tion and sub trac tion. Rel a tive to
each other, mul ti pli ca tion and di vi sion have the same pri or ity, which means that the mul ti -
pli ca tions and di vi sions are done in or der from left to right. When they are dealt with, the
ad di tions and sub trac tions come next; these again have the same pri or ity as each other,
so we do them in order from left to right.

Al though all you re ally need to know is whether one op er a tion has a higher or lower pri or ity
than an other, the com puter does this by hav ing a num ber be tween 1 and 16 to rep re sent
the pri or ity of each op er a tion: * and / have pri or ity 8, and + and - have priority 6.

This or der of cal cu la tion is ab so lutely rigid, but you can cir cum vent it by us ing pa ren the -
ses; any thing in pa ren the ses is eval u ated first and then treated as a single number.

Unary/Bitwise NOT (!)

In In te ger ex pres sions, NextBASIC pro vides one ad di tional unary op er a tor, which is an op -
er a tor that only re quires one (in te ger) num ber alone. This is:

! bitwise NOT

Bitwise NOT in verts the bits of said num ber from 0 to 1 and vice-versa.

PRINT %!15 re turns 65520 as 15 (0000 0000 0000 1111)
gets in verted
to be come 65520 (1111 1111 1111 0000)

66 ZX Spectrum Next – User Manual

Chapter 7 – Expressions Mathematical operations +, - , * , /, MOD

Specifically for Integer Expressions, the order of calculations is strictly left-to-right with
the exception of the use of parentheses. In the case of multiple sets of parentheses, their
contents are also evaluated from left-to-right

PRINT %!43690 re turns 21845 as 43690 (1010 1010 1010 1010)
gets in verted
to be come 21845 (0101 0101 0101 0101)

Integer bitwise, relational and logical operators

Within in te ger ex pres sions there's a num ber of bitwise, re la tional and log i cal op er a tions
that can be per formed. They're listed be low ac cord ing to their type.

Bitwise operators <<, >>, &, |,

NextBASIC, can also per form 5 bitwise op er a tions (that is op er a tions on the in di vid ual bi -
nary dig its that make up a num ber) on in te ger vari ables and ex pres sions. These are:

x << y Shift each bit of x, y places left

x >> y Shift each bit of x, y places right

x & y Bitwise AND between x and y

x | y Bitwise OR between x and y

x y Bitwise XOR between x and y

More in for ma tion on Bitwise op er a tions can be found in In te ger Ex pres sions below.

Integer logical operators

Stan dard log i cal op er a tors can be used within in te ger ex pres sions if pre fixed by a %.
These are used in the same man ner as their float ing point coun ter parts.

x AND y Logical AND (gives 0 if y is zero, x if y is non-zero)
x OR y Logical OR (gives x if y is zero, 1 if y is non-zero)
NOT n Logical NOT (zero -> 1, non-zero -> 0)

Integer relational operators <, >, = ,<=, >=, <>

< less than
> greater than
= equal to

<= less than or equal to
>= greater than or equal to
<> not equal to

The six in te ger re la tional op er a tors, work very much like their reg u lar coun ter parts, but
only within in te ger ex pres sions. Like their float ing point coun ter part, they too pro duce a re -
sult of 0 for false and 1 for true.

Expressions

Ex pres sions are use ful be cause, when ever the com puter is ex pect ing a num ber from you,
you can give it an ex pres sion in stead and it will work out the an swer. The ex cep tions to this
rule are so few that they will be stated ex plic itly in every case.

You can add to gether as many strings (or string vari ables) as you like in a sin gle ex pres -
sion, and if you want, you can even use pa ren the ses. In the case of In te ger Ex pres sions
there are some fur ther con sid er ations and lim i ta tions as well as ad di tional ca pa bil i ties (ie.
Bitwise op er a tions and modulus) so they war rant a separate examination below.

Variable names and limitations

We re ally ought to tell you what you can and can not use as the names of vari ables. As we
have al ready said in Chap ter 2, the name of a string vari able has to be a sin gle let ter fol -
lowed by $; and the name of the con trol vari able of a FOR...NEXT loop must be a sin gle
let ter; but the names of or di nary nu meric vari ables are much freer. They can use any let -

ZX Spectrum Next – User Manual 67

Integer bitwise, relational and logical operators Chapter 7 – Expressions

ters or dig its as long as the first one is a let ter. You can put spaces in as well to make it eas -
ier to read, but they won't count as part of the name. Also, it does n't make any dif fer ence to
the name whether you type it in cap i tals or low er case let ters. There are some re stric tions
about vari able names which are the same as com mands (keywords), how ever, in gen eral,
if the vari able con tains a NextBASIC key word in it (with spaces ei ther side) then it won’t be
accepted.

In te ger vari ables are a bit dif fer ent as they can only be a sin gle let ter A to Z (or lower case a
to z) and they're as signed in an ex pres sion that be gins with a % eg:

 LET %a = 10

Ad di tion ally, all in te ger val ues are treated by de fault as un signed 16-bit val ues ex cept
when you use the spe cial SGN {...} key word (in which case they're signed 16-bit – see the
rel e vant sec tion at the end of this chap ter for details).

All op er a tions are per formed within the con fines of 16 bits, mean ing all re sults are trun -
cated to a max value of 65535, with no checks for over flow/un der flow (ex cept di vi sion by
zero, which re sults in er ror 6, Num ber too big). In te ger vari ables are pre-al lo cated and
stored in a fixed lo ca tion out side the nor mal mem ory used by NextBASIC. This gives a sig -
nif i cant speed ad van tage as well as mem ory sav ings com pared to the use of ordinary
numeric variables.

Fur ther of note is that if a line con tains an in te ger ex pres sion, ALL vari ables and ar rays
con tained within the same ex pres sion are in te ger ones. In cases where there is more than
one in te ger ex pres sion within a line, each needs to be pre ceded with a %.

Here are some ex am ples of the names of vari ables that are al lowed:
x
t42
ItIsWithAHeavyHeartThatIMustSay
nowWeAreSix
nOWWeaReSiX (these last two names are considered the same,

and refer to the same variable)

The following are not allowed to be the names of variables:

pi PI is a keyword
2001 (it begins with a digit)
A new variable (contains the separated keyword NEW)
3 bears (begins with a digit)
M*A*S*H (* is not a letter nor a digit)
Fotherington-Thomas (- is not a letter nor a digit)

In te ger vari ables can only use the let ters A to Z (again, case does not mat ter, so a to z are
also ac cept able) – as you can see be low, for a vari able to be treated as in te ger, a % sym -
bol some where in the same ex pres sion must precede it.

Scientific notation

Nu mer i cal ex pres sions can be rep re sented by a num ber and ex po nent. Try the fol low ing
to prove the point:

PRINT 2.34e0
PRINT 2.34e1
PRINT 2.34e2

and so on up to:

PRINT 2.34e15

68 ZX Spectrum Next – User Manual

Chapter 7 – Expressions Scientific notation

You will see that af ter a while the com puter also starts us ing sci en tific no ta tion. Sim i larly,
try:

PRINT 2.34e-1
PRINT 2.34e-2

and so on.

PRINT gives only eight sig nif i cant dig its of a num ber. Try:

PRINT 4294967295,4294967295-429e7

This proves that the com puter can hold the dig its of 4294967295, even though it is not pre -
pared to dis play them all at once.

The ZX Spec trum Next, un less in te ger vari ables are ex pressly used (see above), uses
float ing point arith me tic, which means that it keeps sep a rate the dig its of a num ber (its
man tissa) and the po si tion of the point (the ex po nent). This is not al ways ex act, even for
whole numbers.

Type:

PRINT 1e10+1-1e10,1e10-1e10+1

Num bers are held to about nine and a half dig its ac cu racy, so 1e10 is too big to be held
ex actly right. The in ac cu racy (ac tu ally about 2) is more than 1, so the num bers 1e10 and
1e10+1 ap pear to the com puter to be equal. For an even more pe cu liar ex am ple, type:

PRINT 5e9+1-5e9

Here the in ac cu racy in 5e9 is only about 1, and the 1 to be added on in fact gets rounded
up to 2. The num bers 5e9+1 and 5e9+2 ap pear to the com puter to be equal.

The larg est in te ger (whole num ber) that can be held com pletely ac cu rately is 1 less than
32 2s mul ti plied to gether (or 4,294,967,295) – in other words: 232-1

The string "" with no char ac ters at all is called the empty or null string. Re mem ber that
spaces are sig nif i cant and an empty string is not the same as one con tain ing noth ing but
spaces. Try:

PRINT "Have you finished "Finne
gans Wake" yet?"

When you press ENTER, you will get the flash ing red cur sor mark that shows there is a
mis take some where in the line. When the com puter finds the dou ble quotes at the be gin -
ning of "Finnegans Wake", it imag ines that these mark the end of the string "Have you fin -
ished ", and it then can't work out what Finnegans Wake means.

There is a spe cial de vice to get over this; when ever you want to write a string quote sym bol
in the mid dle of a string, you must write it twice, like this:

PRINT "Have you finished ""Finn
egans Wake"" yet?"

As you can see from what is printed on the screen, each dou ble quote is only re ally there
once; you just have to type it twice to get it re cog nised.

Decimal, Binary and Hexadecimal numbers

Num ber lit er als in NextBASIC can be ex pressed in Dec i mal (de fault), Bi nary (pre ceded by
@) and Hex a dec i mal (pre ceded by $). Only in te gers can be ex pressed in Bi nary and Hex a -
dec i mal no ta tion. The same rule as any with other in te ger ex pres sion ap plies to bi nary and

ZX Spectrum Next – User Manual 69

Decimal, Binary and Hexadecimal numbers Chapter 7 – Expressions

hex a dec i mal lit er als; they need to be pre ceded by %, once per ex pres sion. Consider these
examples:

PRINT %$E3, @11100011
PRINT %$E3, %@11100011
PRINT %$E3+@11100011

The first ex am ple is in valid as there are two sep a rate ex pres sions fol low ing the PRINT key -
word with the sec ond one not be ing ex pressly marked as an in te ger one. The sec ond ex -
am ple is valid as it con tains two, prop erly marked (pre ceded by %) in te ger ex pres sions.
The third ex am ple is also valid since the ad di tion of the hex a dec i mal and bi nary num bers
is a sin gle in te ger ex pres sion (and there fore it does n't need a sec ond %).

More about Integer Expressions and Variables

As pre vi ously men tioned, the main two rea sons for the use of In te ger Vari ables, Ar rays
and Ex pres sions, is mem ory ef fi ciency and speed of ex e cu tion. Fur ther more, in te ger vari -
ables al low for sim ple bitwise op er a tions that would oth er wise re quire rel a tively com plex
pro grams and cal cu la tions us ing standard floating point numbers.

In te ger vari ables can be used in as sign ments (us ing keywords INPUT, LET, READ, FOR,
ENDPROC and PROC) by pre ced ing their name with a % sym bol.

Nor mally, it is not pos si ble to ac cess stan dard nu meric vari ables or func tions within an in -
te ger ex pres sion, or to ac cess in te ger vari ables or op er a tions within a stan dard nu meric
ex pres sion. In the following program:

10 LET a = 3

20 LET b = 4

30 LET %a = 2

40 LET %b = 5

50 LET c = %a*b

60 LET d = %b * a

70 PRINT c,d

80 LET %b = b

90 LET c =%a*b

100 PRINT c,d

you might ex pect line 70 to pro duce 8 and 15. In stead it re turns 10 and 10 as the % in lines
50 and 60 in di cates that the en tire ex pres sion is an in te ger ex pres sion, and all the vari -
ables named in each line, are in te ger vari ables even though each name is not di rectly pre -
ceded by a % and only line 100 pro duces a dif fer ent out put; 8 and 10 respectively.

It is, as ap par ent from the above ex am ple, pos si ble there fore, to as sign an in te ger ex pres -
sion to a stan dard nor mal nu meric vari able, or vice-versa, and the value will be con verted
ap pro pri ately. This au to matic con ver sion is called cast ing and it's best il lus trated in line 80
above as well as the ex am ples be low which are all valid as sign ments:

LET %A=2*PI*radius

as signs a trun cated float ing point cal cu la tion to in te ger vari able A

LET %B=%B+(A(7)<<3)

shifts in te ger ar ray el e ment A(7) left 3 bits and adds it to in te ger vari able B

LET addr=%x(1)<<8+x(0)

70 ZX Spectrum Next – User Manual

Chapter 7 – Expressions More about Integer Expressions and Variables

cal cu lates stan dard nu meric vari able addr from low and high bytes in in te ger ar ray X el e -
ments 0 and 1.

As we saw ear lier it's not nor mally pos si ble to use a float ing point ex pres sion within an in te -
ger ex pres sion. But what if we needed to do so? Con sider the fol low ing example:

LET %a = 1: LET %b = 1 : LET %c = 1:
PRINT %a + PI + b + c

Looks sim ple enough, does n't it? All we ex pect to hap pen is for cast ing to take over and
use just the in te ger por tion of the value of PI, but it does n't work that way. In stead the cur -
sor flashes next to PI and the NextBASIC ed i tor com plains. To ad dress this, NextBASIC in -
cludes the spe cial INT {fp_ex pres sion} key word (do not omit the braces) which con verts
(casts) any float ing point ex pres sion fp_ex pres sion into an in te ger. So even if the ex am ple
above would n't work, a small change:

LET %a = 1: LET %b = 1 : LET %c = 1:
PRINT %a + INT { PI } + b + c

and it works hap pily! As a mat ter of fact INT {...} will con vert any ex pres sion that pro duces
a float ing point value. Here are some ex am ples:

LET test = 3.45: PRINT % INT {test}

LET alpha = 0: LET beta = 1: LET %a =
%@0111 + INT {alpha OR beta)}

LET %x=%x+INT{(INKEY$="P" OR
INKEY$="p")}-INT{(INKEY$="O" OR
INKEY$="o")}

De spite the pres ence of INT {...}, in or der to avoid con fu sion and un ex pected re sults that
can make de bug ging1 very hard, it would be a good prac tice to not use one or more sin gle
let ter stan dard vari ables when there's a pos si bil ity of a sim i larly named vari able ex ist ing in
its in te ger form and in stead use a more eas ily identifiable name.

Bitwise op er a tions on in te ger vari ables and ar rays are pretty straight for ward and in volve
ma nip u la tions of the in di vid ual bits of an in te ger num ber as rep re sented in the ZX Spec -
trum Next's memory.

Shift ing left or right in volves mov ing the bi nary con tent of an in te ger vari able x places (bits)
to the left or right, pad ding from the right or left re spec tively with as many 0s as the places
we shift the num ber for.

To il lus trate bit shift ing we can do the fol low ing ex am ple: Let's as sign the dec i mal num ber
1201 to in te ger vari able A, then ma nip u late its bits by shift ing them left and right and print -
ing the result:

100 LET %A = 1201

110 LET %A = %A>>3

120 LET %A = %A<<3

130 PRINT %A

This will re turn 1200 when run. To dem on strate what went on we could il lus trate the ex -
pres sions in two con sec u tive PRINT state ments:

100 PRINT %1200>>3

110 PRINT %150<<3

ZX Spectrum Next – User Manual 71

More about Integer Expressions and Variables Chapter 7 – Expressions

1 Debugging is the programming process where you first attempt to ascertain if a program has errors, then to identify
these errors and finally to remove them.

Once we see how the num bers are stored in mem ory as a se ries of bits we can eas ily un -
der stand what hap pened:

The re main ing bitwise op er a tions are very straight for ward. Bitwise AND (&) is used to
quickly de ter mine if a bit in side a num ber is set to 1 or not. The first op er and is the num ber
we want to check and the sec ond one is called the bitmask which is the num ber we check
against. Con sider these two examples:

PRINT %@10101010 & @01010101
PRINT %@11100011 & @10

First ex am ple will re turn 0 while the sec ond 2. The rea son for this, is that the num bers in the
first ex am ple don't have co in cid ing 1 bits in the same po si tions while on the sec ond ex am -
ple the sec ond bit will be 1 and as a con se quence the bits that match will be the first and
sec ond which make bi nary 10 which in dec i mal equals 2. To illustrate further:

170 10101010

AND 85 (Bitmask) 01010101
Result 00000000

As you can see, no bit set to 1 in any po si tion of the two num bers matches each other,
there fore the re sult re turned is 0 whereas in the sec ond ex am ple:

227 11100011

AND 2 (Bitmask) 00000010
Result 00000010

Bit 2 of the mask, matches bit 2 of the num ber and it is 1 there fore 10 is re turned (bi nary
equiv a lent of dec i mal 2)

Bitwise OR (|) will re turn 1 in any po si tion if at least one bit of the two num bers is the same
po si tion is 1 and 0 if both are set to 0. For ex am ple:

PRINT %@10101010 | @01101011

will re turn 235 as only bits in po si tions 3 and 5 in both num bers are set to 0 mak ing the re -
sult ing num ber 11101011 in bi nary form (or 235 in dec i mal). To better il lus trate:

170 10101010
OR 107 (Bitmask) 01101011
Result 11101011

Fi nally, bitwise XOR () will only re turn 1 in any po si tion if ei ther bit is set to 1 but not both.
So two 0s and two 1s, both re turn 0 in a po si tion. Us ing the same num bers as in the pre vi -

72 ZX Spectrum Next – User Manual

Chapter 7 – Expressions More about Integer Expressions and Variables

Fig. 12 - Bit shifting

ous example:

PRINT %@10101010 ^ @01101011

will re turn 193 or bi nary 1100001 since:

170 10101010
XOR 107 (Bitmask) 01101011
Result 11000001

Bitwise ex pres sions are uniquely help ful in de ter min ing the con di tion of flags in sev eral of
the ZX Spec trum Next ports (as we will see in Chap ter 23), since these take the form of in -
di vid ual bits in a bi nary num ber and test ing those with reg u lar (float ing point) arith me tic
can be cumbersome and slow.

Signed vs Unsigned Integer Expressions

As you saw in Chap ter 2 and in the in tro duc tion to this chap ter, in te ger vari ables in
NextBASIC are fixed to 16-bits wide un signed, which means that they can dis play only
pos i tive in te gers from 0 to 65535. To il lus trate ap prox i mately what that means, try the
following:

PRINT %-64448

The com puter will re spond with: 1088. Keep this re sult in mind for a mo ment and then try:

PRINT %-32448

This time the com puter will dis play the num ber 33088 on screen. Are you con fused yet?
Maybe see ing the num bers in bi nary will help. Let's start with the first re sponse of 1088
and we'll work back wards.

Decimal Binary

1088 0000 0100 0100 0000
-64448 1 0000 0100 0100 0000
64447 1111 1011 1011 1111 Don't mind this for now!

Aha! Let's now see the sec ond re sponse:
Decimal Binary

33088 1000 0001 0100 0000
-32448 1000 0001 0100 0000
32447 0111 1110 1011 1111 Don't mind this for now!

Do you now see the pat tern? Let's do one more thing that will il lus trate how the com puter
stores the data in ter nally (We'll now jump a bit ahead and bor row a bit from Chap ter 24).

Type the fol low ing pro gram:

10 DPOKE 30000, %-32448

20 PRINT % DPEEK 30000: PRINT

PEEK 30000, PEEK 30001

Line 10 en ters the en tire 16 bits of the value -32448 into mem ory lo ca tions 30000 and
30001, while line 20 first prints what's stored in lo ca tions 30000 and 30001 as an un signed
in te ger and then the in di vid ual bytes that make up that value. You will get:

33088
64 129

The sec ond line just trans lates to 0100 0000 and 1000 0001 in bi nary which if we con sider
that the small est por tion of the 16 bit num ber was stored first we can re build it as: (129 x
256) + 64 which equals… 33088!

ZX Spectrum Next – User Manual 73

Signed vs Unsigned Integer Expressions Chapter 7 – Expressions

Now let's first give some back ground so we can tie all this in for ma tion to gether: A signed
in te ger is one with ei ther a plus or mi nus sign in front in di cated by one bit in the be gin ning
of the num ber. Since we have 16 bits as signed to in te gers and tak ing the one bit out for
the sign, that would leave us 15 bits to dis play a num ber with a sign (whereas this sign is
pos i tive or neg a tive). Thus a 16 bit signed in te ger will be able to dis play num bers to the
range of -32768 to +32767. This ob vi ously, also means that un signed in te gers can have a
value twice as high as signed in te gers. The most com mon way to rep re sent signed num -
bers (and the one NextBASIC uses) is to use two's com ple ment which works as follows:

On any given bi nary num ber rep re sent ing a dec i mal x, its two's com ple ment is a bi nary
num ber con sti tuted by the first num ber with in verted dig its from 0 to 1 and vice-versa and
then add ing 1. The re sult ing bi nary num ber rep re sents dec i mal -x. For example:

For dec i mal num ber 2 (rep re sented in 8 bit bi nary as 00000010), -2 would be 00000010's
two's com ple ment. To cal cu late it we'd have to in vert the dig its mak ing it 11111101 and
then add 1 which would make the re sult ing num ber 11111110. The very first bit sig ni fies
the sign (0 for pos i tive and 1 for neg a tive). The ben e fit of us ing two's com ple ment is that
stan dard arith me tic works prop erly and any num bers that ex ceed the bit-width of the
numbers get discarded.

Af ter dis cuss ing this, the pat tern emerg ing from the pre vi ous ex am ples be comes clear!

What hap pened in the ex am ples above is that NextBASIC, in the first ex am ple (as men -
tioned in the be gin ning of this chap ter) trun cated the sign bit as it was lo cated in the 17th
bit and left us with only the 16 bit un signed in te gers of the neg a tive num ber which is the
same as the 16 bit equiv a lent of the num ber we fed it. It then tried to in ter pret the sign bit
but since reg u lar in te gers are un signed it just re turned the pos i tive in te ger that's rep re -
sented by the num ber. For the com puter there fore in both cases, what we fed it and what it
printed were the exact same number

A fur ther il lus tra tion of the above can be shown by us ing the unary not op er a tor (!) which as
we dis cussed ear lier in the chap ter, in verts the num ber. Let's see:

PRINT %!1088, %!33088

The com puter re turns:

64447 32447

And if we add these to gether by do ing:

PRINT %1088 + 64447, %33088 + 32447

we will get in both cases 65535!

In te ger arith me tic is ex tremely fast, so we should have at least a way of rep re sent ing
signed in te gers in NextBASIC for both fast cal cu la tions as well as spe cial cases, so
NextBASIC does pro vide the way to deal with these num bers with the spe cial SGN {...}
key word. What this does is, to treat any in te ger ex pres sion en closed within it as a signed
in te ger value (rang ing from -32768 to 32767). All ex pres sions en closed within an SGN
{...} block are called signed in te ger ex pres sions. Signed in te ger ex pres sions use all the
same op er a tors and func tions as stan dard un signed ones, but the arith me tic op er a tors
(+, -, *, /, MOD) and the re la tional op er a tors (<, <=, >, >=, =, <>) treat their operands
as signed val ues in the range -32768 to 32767. The other op er a tors and func tions can be
used within a signed in te ger expression, but still treat their operands as unsigned.

Based on how two's com ple ment works, the o ret i cally you can work with just the two's
com ple ment num bers (which if re garded as un signed in te gers, are also pos i tive in te gers)
but in these cases that would be very cum ber some to have to re mem ber the equiv a lents
in stead of the ac tual num ber we want to in volve in our calculation.

If say we need to do 1 + (-32300) - (-1) what would be eas ier to im ple ment?

74 ZX Spectrum Next – User Manual

Chapter 7 – Expressions Signed vs Unsigned Integer Expressions

PRINT % SGN {1}+ SGN {-32300}- SGN {-1}

or

PRINT %1+33236-65535

There are ob vi ous ben e fits on us abil ity; and also non ob vi ous ben e fits such as in the fol -
low ing example:

10 LET %x=0

20 PRINT %(x-1)>0,

%SGN{(x-1)>0}

which will re sult in:

1 0

on screen as in un signed ex pres sions 0-1 equals 65535 (see also the pre vi ous ex am ple)
which is ob vi ously larger than 0 while in signed ex pres sions 0-1 equals -1 which is not
larger than 0!

SGN {...}, also af fects mul ti pli ca tion, di vi sion and MODulo op er a tions. Con sider this ex -
am ple (which also con tains a pitfall!):

10 PRINT %10*-1

20 PRINT %10* SGN {-1}

30 PRINT % SGN {10* SGN {-1}}

40 PRINT % SGN {10*-1}

If you RUN this, you will see the fol low ing on screen:

65526
65526
-10
-10

What hap pened here is that -1 is as we dis cussed 65535 for un signed in te gers. So on line
10, the com puter mul ti plied 10 * 65535 which re sulted to 655350 but as an in te ger num -
ber, this is larger than 16 bits. Then it gets trun cated to 16 bits which re sults into 65526
which is ob vi ously wrong as a re sult. Mov ing to line 20 we hit the first pit fall dis cussed in
the open ing state ment: The re sult of SGN {-1} which is -1 gets con verted into an un -
signed in te ger it self so you end up with the ex act same sit u a tion as with line 10; a mul ti pli -
ca tion of 10 with 65535. The pit fall there fore here is that SGN{...} must ap ply to the
en tirety of the in te ger ex pres sion, so if there are other non-signed ex pres sions they must
be taken into con sid er ation when writ ing each state ment! Line 30 pro duces fi nally what we
were aim ing for, but that also hap pens with line 40! So both are correct but which is the
right way to do it?

The an swer to that ques tion lies with what we dis cussed above re gard ing the "pit fall" with
in te ger ex pres sions. The subexpression SGN {-1} will get eval u ated to what ever is in the
en clos ing ex pres sion. So if the en clos ing ex pres sion is an un signed ex pres sion, the re sult
of the subexpression will also be come con verted to un signed; ergo since the en tirety of
the in te ger ex pres sion of line 30 is a signed ex pres sion, the signed subexpression is un -
nec es sary and may even de lay ex e cu tion (es pe cially in very com plex cal cu la tions). The
right way there fore to do it, is the way de fined in line 40. Ob vi ously this also ap plied to our
initial example which is best written as:

PRINT % SGN {1 -32300- (-1)}

which is much neater to write AND read!

ZX Spectrum Next – User Manual 75

Signed vs Unsigned Integer Expressions Chapter 7 – Expressions

NextBASIC functions within integer expressions

We al ready dis cussed the us age of the INT {...} key word which con verts any float ing point
ex pres sion into an in te ger ex pres sion, but in many cases this can be slow. In other cases
the val ues pro duced by a func tion are ei ther plain 8 or 16 bit in te gers which means that in -
te ger-only ver sions of said func tion would pro vide sig nif i cant boost over their stan dard
coun ter parts. NextBASIC ca ters for these cases with spe cial in te ger-only forms of the
following functions:

IN n Read value from Hardware Port n – See Chapter 23

REG n Read value from Next Register n – See Chapter 23

PEEK a Read byte from address a in memory – See Chapter 24

DPEEK a Read word2 from memory (double PEEK) – See
Chapter 24

USR a Execute Machine Code routine in address a and return
value left in BC – See Chapter 26

BIN n Synonym for @n, specifying binary values

RND n Generates pseudo-random value in range 0 to n–1
(equivalent to floating-point INT (RND*n))

BANK b PEEK o Read byte at offset o from bank b – See Chapter 24

BANK b DPEEK o Read word at offset o from bank b (double PEEK) –
See Chapter 24

BANK b USR o Execute Machine Code routine at offset o in bank b
and return value left in BC – See Chapters 24 and 26

These are writ ten by in clud ing a % sign in front of them like all in te ger ex pres sions. For ex -
am ple to read from hard ware port 254:

LET %a = % IN 254

Or to check what speed your ZX Spec trum Next is run ning (mask ing the speed bits of
NextREG 7) you could give :

PRINT %REG 7 & BIN 00000011

Ran domly read a byte from the ROM:

LET %a=% RND 16384:PRINT %a,% PEEK a

Exercises

1. Us ing the dis cus sion about the unary ! op er a tor and 16 bit bi nary num bers, cal -
cu late and print on screen the two's com ple ment for the signed 32 bit in te ger:
650323

76 ZX Spectrum Next – User Manual

Chapter 7 – Expressions NextBASIC functions within integer expressions

2 A word in standard computer terminology is a two-byte (ie. 16 bit) value. 32 bit values (two-word) are called Long
Words.

Strings

This page intentionally left blank

Strings

String slicing, using TO

Given a string, a substring of it con sists of some con sec u tive char ac ters from it, taken in
se quence. Thus “string” is a substring of “big ger string”, but “b sting” and “big reg” are
not.

There is a no ta tion called slic ing for de scrib ing substrings, and this can be ap plied to ar bi -
trary string ex pres sions. The gen eral form is:

string ex pres sion (start TO fin ish)

so that, for in stance:

"abcdef"(2 TO 5)="bcde"

If you omit the start, then 1 is as sumed; if you omit the fin ish then the length of the string is
as sumed. Thus:

"abcdef"(TO 5)="abcdef"(1 TO 5)="abcde"

"abcdef"(2 TO)="abcdef"(2 TO 6)="bcdef"

"abcdef"(TO)="abcdef"(1 TO 6)="abcdef"

(You can also write this last one as "abcdef"(), for what it's worth.)

A slightly dif fer ent form misses out the TO and just has one num ber:

"abcdef"(3)="abcdef"(3 TO 3)="c"

Al though nor mally both start and fin ish must re fer to ex ist ing parts of the string, this rule is
over rid den by an other one: if the start is more than the fin ish, then the re sult is the empty
string. So:

"abcdef"(5 TO 7)

gives er ror 3 Sub script wrong be cause the string only con tains 6 char ac ters and 7 is too
many, but:

"abcdef"(8 TO 7)="" (an empty string)

and:

"abcdef"(1 TO 0)="" (again, an empty string)

The start and fin ish must not be neg a tive, or you get er ror B in te ger out of range. This next
pro gram is a sim ple one il lus trat ing some of these rules.

10 LET a$="abcdef"

20 FOR n=1 TO 6

30 PRINT a$(n TO 6)

40 NEXT n

50 STOP

Type NEW when this pro gram has been run and en ter the next pro gram:

10 LET a$="ABLE WAS I"

20 FOR n=1 TO 10

30 PRINT a$(n TO 10),a$((11-n)

TO 10)

40 NEXT n

ZX Spectrum Next – User Manual 79

String slicing, using TO Chapter 8 – Strings

For string vari ables, we can not only ex tract substrings, but also as sign to them. For in -
stance, type:

LET a$="I'm the ZX Spectrum Next"

and then:

LET a$(5 TO 8)="******"

and:

PRINT a$

No tice how since the substring a$(5 TO 8) is only 4 char ac ters long, only the first four stars
have been used. This is a char ac ter is tic of as sign ing to substrings: the substring has to be
ex actly the same length af ter wards as it was be fore. To make sure this hap pens, the string
that is be ing as signed to it is cut off on the right if it is too long, or filled out with spaces if it
is too short – this is called Pro crus tean as sign ment af ter the road ban dit Pro crus tes who
used to make sure that his vic tims fit ted the bed by ei ther stretch ing them out on a rack or
cutting their feet off.

If you now try:

LET a$()="Hello there"

and:

PRINT a$;"."

You will see that the same thing has hap pened again (this time with spaces put in) be -
cause a$() counts as a substring.

LET a$="Hello there"

will do it prop erly.

Com pli cated string ex pres sions will need pa ren the ses around them be fore they can be
sliced. For ex am ple:

"abc"+"def"(1 TO 2)="abcde"

("abc"+"def")(1 TO 2)="ab"

Exercise

1. Try writ ing a pro gram to print out the day of the week us ing string slic ing. Hint:
let the string be SunMonTuesWedThursFriSat.

80 ZX Spectrum Next – User Manual

Chapter 8 – Strings Exercise

Functions

Functions

Con sider the sau sage ma chine. You put a lump of meat in at one end, turn a han dle, and
out co mes a sau sage at the other end. A lump of pork gives a pork sau sage, a lump of fish
gives a fish sau sage, and a lump of beef a beef sau sage.

Func tions are prac ti cally in dis tin guish able from sau sage ma chines but there is a dif fer -
ence: they work on num bers and strings in stead of meat. You sup ply one value (called the
ar gu ment), mince it up by do ing some cal cu la tions on it, and even tu ally get an other value,
the re sult.

Dif fer ent ar gu ments give dif fer ent re sults, and if the ar gu ment is com pletely in ap pro pri ate
the func tion will stop and give an error report.

Just as you can have dif fer ent ma chines to make dif fer ent prod ucts – one for sau sages.
an other for dish cloths, and a third for fish-fin gers and so on, dif fer ent func tions will do dif -
fer ent cal cu la tions. Each will have its own value to dis tin guish it from the others.

You use a func tion in ex pres sions by typ ing its name fol lowed by the ar gu ment, and when
the ex pres sion is eval u ated the re sult of the func tion will be worked out.

String functions – LEN, STR$ and VAL

As an ex am ple, there is a func tion called LEN, which works out the length of a string. Its ar gu -
ment is the string whose length you want to find, and its re sult is the length, so that if you type

PRINT LEN "ZX Spectrum Next"

the com puter will write the an swer 16, the num ber of char ac ters in ZX Spec trum Next (spaces
are counted as a char ac ter).

If you mix func tions and op er a tions in a sin gle ex pres sion, then the func tions will be worked
out be fore the op er a tions. Again, how ever, you can cir cum vent this rule by us ing pa ren the ses.
For in stance, here are two ex pres sions which dif fer only in the pa ren the ses, and yet the cal cu -
la tions are per formed in an en tirely dif fer ent or der in each case (al though, as it hap pens, the
end re sults are the same).

LEN "Fred"+ LEN "Bloggs" LEN ("Fred"+"Bloggs")
4+LEN "Bloggs" LEN ("FredBloggs")
4+6 LEN "FredBloggs"
10 10

Here are some more func tions:

82 ZX Spectrum Next – User Manual

Chapter 9 – Functions String functions – LEN, STR$ and VAL

Fig. 13 – How functions work

STR$ con verts num bers into strings; its ar gu ment is a num ber, and its re sult is the string
that would ap pear on the screen if the num ber were dis played by a PRINT state ment.
Note how its name ends in a $ sign to show that its re sult is a string. For ex am ple, you
could say:

LET a$=STR$ 1e2

which would have ex actly the same ef fect as typ ing:

LET a$="100"

Or you could say:

PRINT LEN STR$ 100.000

and get the an swer 3, be cause STR$ 100.0000="100".

VAL is like STR$ in re verse: it con verts strings into num bers. For in stance:

VAL "3.5"=3.5

In a sense, VAL is the re verse of STR$, be cause if you take any num ber, ap ply STR$ to it,
and then ap ply VAL to it, you get back to the num ber you first thought of.

How ever, if you take a string, ap ply VAL to it, and then ap ply STR$ to it, you do not al ways
get back to your orig i nal string.

VAL is an ex tremely pow er ful func tion, be cause the string which is its ar gu ment is not re -
stricted to look ing like a plain num ber – it can be any nu meric ex pres sion. Thus, for
instance:

VAL "2*3"=6

or even:

VAL ("2"+"*3") = 6

There are two pro cesses at work here. In the first, the ar gu ment of VAL is eval u ated as a
string: the string ex pres sion "2"+"*3" is eval u ated to give the string "2*3". Then, the string
has its dou ble quotes stripped off, and what is left is eval u ated as a num ber; so 2*3 is
eval u ated to give the num ber 6.

This can get pretty con fus ing if you don't keep your wits about you. Re mem ber that in side
a string a string quote must be writ ten twice. If you go down into fur ther depths of strings,
then you find that string quotes need to be qua dru pled or even oc tu pled.

There is an other func tion, rather sim i lar to VAL, al though prob a bly less use ful, called
VAL$. Its ar gu ment is still a string, but its re sult is also a string. To see how this works, re -
call how VAL goes in two steps: first its ar gu ment is eval u ated as a string, then the dou ble
quotes are stripped off this, and what ever is left is eval u ated as a num ber. With VAL$, the
first step is the same, but af ter the string quotes have been stripped off in the sec ond step,
what ever is left is eval u ated as another string. Thus:

VAL$ """Fruit punch""" = Fruit punch

(No tice how the string quotes pro lif er ate again.) Do:

LET a$="99"

and print out all of the fol low ing: VAL a$, VAL "a$", VAL """a$""", VAL$ a$, VAL$ "a$" and
VAL$ """a$""". Some of these will work, and some of them won't; try to ex plain all the an -
swers. (Keep a cool head.)

ZX Spectrum Next – User Manual 83

String functions – LEN, STR$ and VAL Chapter 9 – Functions

Number functions – SGN, ABS, INT and SQR

SGN is the sign func tion (some times called signum). It is the first func tion you have seen
that has noth ing to do with strings, be cause both its ar gu ment and its re sult are num bers.
The re sult is +1 if the ar gu ment is pos i tive, 0 if the ar gu ment is zero, and -1 if the ar gu ment
is negative.

ABS is an other func tion whose ar gu ment and re sult are both num bers. It con verts the ar -
gu ment into a pos i tive num ber (which is the re sult) by for get ting the sign, so that for
instance:

ABS -3.2 = ABS 3.2 = 3.2

INT stands for in te ger part – an in te ger is a whole num ber, pos si bly neg a tive. This func tion
con verts a frac tional num ber into an in te ger by throw ing away the frac tional part, so that
for instance:

INT 3.9=3

Be care ful when you are ap ply ing it to neg a tive num bers, be cause it al ways rounds down:
thus, for in stance:

INT -3.9=-4

SQR cal cu lates the square root of a num ber – the re sult that, when mul ti plied by it self,
gives the ar gu ment. For in stance:

SQR 4 = 2 because 2*2=4

SQR 0.25 = 0.5 because 0.5*0.5=0.25

SQR 2 = 1.4142136 (approximately) because 1.4142136*1.4142136=2.0000001

If you mul ti ply any num ber (even a neg a tive one) by it self, the an swer is al ways pos i tive.
This means that neg a tive num bers do not have square roots, so if you ap ply SQR to a
neg a tive ar gu ment you get an er ror A In valid Ar gu ment.

User defined functions using DEF and FN

You can also de fine func tions of your own. Pos si ble names for these are FN fol lowed by a
let ter (if the re sult is a num ber) or FN fol lowed by a let ter fol lowed by $ (if the re sult is a
string). These are much stricter about pa ren the ses; the ar gu ment must be en closed in
parentheses.

You de fine a func tion by putt ing a DEF state ment some where in the pro gram. For in -
stance, here is the def i ni tion of a func tion FN s whose re sult is the square of the argument:

10 DEF FN s(x)=x*x: REM square of x

The s fol low ing the DEF FN is the name of the func tion. The x in pa ren the ses is a name by
which you wish to re fer to the ar gu ment of the func tion. You can use any sin gle let ter you
like for this (or, if the ar gu ment is a string, a sin gle let ter fol lowed by $).

Af ter the = sign co mes the ac tual def i ni tion of the func tion. This can be any ex pres sion,
and it can also re fer to the ar gu ment us ing the name you've given it (in this case, x) as
though it were an or di nary variable.

When you have en tered this line, you can in voke the func tion just like one of the com -
puter's own func tions, by typ ing its name, FN s, fol lowed by the ar gu ment. Re mem ber that
when you have de fined a func tion your self, the ar gu ment must be en closed in pa ren the -
ses. Try it out a few times:

PRINT FN s(2)

84 ZX Spectrum Next – User Manual

Chapter 9 – Functions Number functions – SGN, ABS, INT and SQR

PRINT FN s(3+4)
PRINT 1+INT FN s (LEN "chicken"/2+3)

Once you have put the cor re spond ing DEF state ment into the pro gram, you can use your
own func tions in ex pres sions just as freely as you can use the com puter's.

Note: in some di a lects of BASIC you must even en close the ar gu ment of one of the com -
puter's func tions in pa ren the ses. This is not the case in NextBASIC.

INT al ways rounds down. To round to the near est in te ger, add .5 first – you could write
your own func tion to do this:

20 DEF FN r(x)=INT (x+0.5):

REM gives x rounded to the

nearest integer.

You will then get, for in stance:

FN r(2.9) = 3 FN r(2.4) = 2

FN r(-2.9) = -3 FN r(-2.4) = -2

Com pare these with the an swers you get when you use INT in stead of FN r. Type in and
run the fol low ing:

10 LET x=0: LET y=0: LET a=10

20 DEF FN p(x,y)=a+x*y

30 DEF FN q()=a+x*y

40 PRINT FN p(2,3),FN q()

There are a lot of sub tle points in this pro gram.

First, a func tion is not re stricted to just one ar gu ment: it can have more, or even none at all
– but you must still al ways keep the pa ren the ses.

Sec ond, it does n't mat ter where abouts in the pro gram you put the DEF FN state ments. Af -
ter the com puter has ex e cuted line 10, it sim ply skips over lines 20 and 30 to get to line 40.
They do, how ever, have to be some where in the pro gram. They can't be in a command.

Third, x and y are both the names of vari ables in the pro gram as a whole, and the names of
ar gu ments for the func tion FN p. FN p tem po rarily for gets about the vari ables called x and
y, but since it has no ar gu ment called a, it still re mem bers the vari able a. Thus when FN
p(2,3) is be ing eval u ated, a has the value 10 be cause it is the vari able, x has the value 2
be cause it is the first ar gu ment, and y has the value 3 be cause it is the sec ond ar gu ment.
The re sult is then, 10+2*3=16. When FN q() is be ing eval u ated, on the other hand, there
are no ar gu ments. So a, x and y all still re fer to the vari ables and have val ues 10, 0 and 0
re spec tively. The an swer in this case is 10+0*0=10.

Now change line 20 to:

20 DEF FN p(x,y)=FN q()

This time, FN p(2,3) will have the value 10 be cause FN q will still go back to the vari ables x
and y rather than us ing the ar gu ments of FN p.

Some BASlCs (not NextBASIC) have func tions called LEFT$, RIGHT$, MID$ and TL$.

LEFT$ (a$,n) gives the substring of a$ con sist ing of the first n char ac ters.

RIGHT$ (a$,n) gives the substring of a$ con sist ing of the char ac ters from nth on.

MID$ (a$, n1, n2) gives the substring of a$ con sist ing of n2 char ac ters start ing at the n1
th.

ZX Spectrum Next – User Manual 85

User defined functions using DEF and FN Chapter 9 – Functions

TL$ (a$) gives the substring of a$ con sist ing of all its char ac ters ex cept the first.

You can write some user-de fined func tions to do the same: e.g.

10 DEF FN t$(a$)=a$(2 TO):

REM TL$

20 DEF FN l$(a$, n)=a$(TO

n): REM LEFT$

Check that these work with strings of length 0 or 1.

Note that our FN I$ has two ar gu ments, one a num ber and the other a string.

A func tion can have up to 26 nu meric ar gu ments (since the Latin al pha bet has 26 let ters)
and at the same time up to 26 string ar gu ments.

A func tion can not have in te ger ar gu ments, nor use in te ger ex pres sions in its def i ni tions.

Exercise

1. Use the func tion FN s(x)=x*x to test SQR. You should find that:

FN s(SQR x)=x

if you sub sti tute any pos i tive num ber for x, and:

SQR FN s(x)=ABS x

whether x is pos i tive or neg a tive (Why the ABS?)

2. Write func tions FN r$ and FN m$ for RIGHT$ and MID$

86 ZX Spectrum Next – User Manual

Chapter 9 – Functions User defined functions using DEF and FN

Mathematical
Functions

This page intentionally left blank

Mathematical Functions

This chap ter deals with the math e mat ics that the ZX Spec trum Next can han dle. Quite pos -
si bly you will never have to use any of this at all, so if you find it too heavy go ing, don't be
afraid of skip ping it. It cov ers the op er a tion (rais ing to a power), the func tions EXP and
LN, and the trig o no met ri cal func tions SIN, COS, TAN and their in verses ASN, ACS, and
ATN.

 and EXP

You can raise one num ber to the power of an other – that means: mul ti ply the first num ber
by it self the sec ond num ber of times. This is nor mally shown by writ ing the sec ond num ber
just above and to the right of the first num ber like so 23; but since this gets un nec es sar ily
com plex to write and dis play on a com puter, we use the sym bol in stead. For ex am ple,
the powers of 2 are:

21=2
22=2*2=4 (2 squared)
23=2*2*2=8 (2 cubed)
24=2*2*2*2=16 (2 to the fourth power)

Thus at its most el e men tary level, ab means a mul ti plied by it self b times, but ob vi ously
this only makes sense if b is a pos i tive whole num ber. To find a def i ni tion that works for
other val ues of b, we con sider the rule:

a(b+c) = ab*ac

(No tice that we give a higher pri or ity than * and / so that when there are sev eral op er a -
tions in one ex pres sion, the s are eval u ated be fore the *s and /s.) You should not need
much con vinc ing that this works when b and c are both pos i tive whole num bers; but if we
de cide that we want it to work even when they are not, then we find our selves com pelled to
accept that:

a0 = 1
a(-b) = 1/ab
a(1/b) = the bth root of a, which is to say, the num ber that you have to

mul ti ply by it self b times to get a.
and:

a(b*c) = (ab)c

If you have never seen any of this be fore then don't try to re mem ber it straight away; just re -
mem ber that:

a(-1) = 1/a

and:

a(1/2) = SQR a

and maybe when you are fa mil iar with these the rest will be gin to make sense.

Ex per i ment with all this by try ing this pro gram:

10 INPUT a,b,c

20 PRINT a^(b+c),a^b*a^c

30 GO TO 10

Of course, if the rule we gave ear lier is true, then each time round the two num bers that the
com puter prints out will be equal. (Note – be cause of the way the com puter works out ,
the num ber on the left – a in this case – must never be neg a tive.)

ZX Spectrum Next – User Manual 89

 and EXP Chapter 10 – Mathematical Functions

A rather typ i cal ex am ple of what this func tion can be used for is that of com pound in ter est.
Sup pose you keep some of your money in a build ing so ci ety and they give 15% in ter est
per year. Then af ter one year you will have not just the 100% that you had any way, but also
the 15% in ter est that the build ing so ci ety have given you, mak ing al to gether 115% of what
you had orig i nally. To put it an other way, you have mul ti plied your sum of money by 1.15,
and this is true how ever much you had there in the first place. Af ter an other year, the same
will have hap pened again, so that you will then have 1.15*1.15=1.152=1.3225 times
your orig i nal sum of money. In gen eral, af ter y years, you will have 1.15y times what you
started out with.

If you try this com mand:

FOR y=0 TO 100:PRINT y,10*1.15^y

:NEXT y

you will see that even start ing off from just £10, it all mounts up quite quickly, and what is
more, it gets faster and faster as time goes on. (Al though even so, you might still find that it
does n't keep up with in fla tion.)

This sort of be hav iour, where af ter a fixed in ter val of time some quan tity mul ti plies it self by
a fixed pro por tion, is called ex po nen tial growth, and it is cal cu lated by rais ing a fixed num -
ber to the power of the time. Sup pose you did this:

10 DEF FN a(x)=a^x

Here, a is more or less fixed, by LET state ments: its value will cor re spond to the in ter est
rate, which changes only ev ery so of ten.

There is a cer tain value for a that makes the func tion FN a look es pe cially pretty to the
trained eye of a math e ma ti cian and this value is called e. NextBASIC has a func tion called
EXP de fined by:

 EXP x=ex

Un for tu nately, e it self is not an es pe cially pretty num ber: it is an in fi nite non-re cur ring dec i -
mal. You can see its first few dec i mal places by doing:

 PRINT EXP 1

be cause EXP 1 = e1 = e. Of course, this is just an ap prox i ma tion. You can never write
down e ex actly.

LN

The in verse of an ex po nen tial func tion is a log a rith mic func tion: the log a rithm (to basea) of
a num ber x is the power to which you have to raise a to get the num ber x, and it is writ ten
logax. Thus by def i ni tion alogax=x; and it is also true that log(ax)=x. You may well al -
ready know how to use base10 log a rithms for do ing mul ti pli ca tions; these are called com -
mon log a rithms. NextBASIC has a func tion LN which cal cu lates log a rithms to the basee;
these are called nat u ral log a rithms. To cal cu late log a rithms to any other base, you must di -
vide the nat u ral log a rithm by the nat u ral log a rithm of the base:

 logax = LN x/ LN a

PI

Given any cir cle, you can find its per im e ter (the dis tance round its edge; of ten called its cir -
cum fer ence) by mul ti ply ing its di am e ter (width) by a num ber called p. (p is a Greek p, and
it is used be cause it stands for the Greek word per im e ter. Un like, what's com monly be -
lieved, its pro nun ci a tion is the same as in English.)

90 ZX Spectrum Next – User Manual

Chapter 10 – Mathematical Functions LN

Like e, p is an in fi nite non-re cur ring dec i mal; it starts off as 3.141592653589.... The word PI in
NextBASIC is taken as stand ing for this num ber – try PRINT PI.

Trigonometry with SIN, COS, TAN, ASN, ACS and ATN

The trig o no met ri cal func tions mea sure what hap pens when a point moves round a cir cle.
Here is a cir cle of ra dius 1 (1 what? It does n't mat ter, as long as we keep to the same unit
all the way through. There is noth ing to stop you in vent ing a new unit of your own for ev ery
cir cle that you hap pen to be in ter ested in) and a point mov ing round it. The point started at
the 3 o'clock po si tion, and then moved round in an anti-clock wise di rec tion.

We have also drawn in, two lines called axes through the cen tre of the cir cle. The one through
9 o'clock and 3 o'clock is called the x-axis, and the one through 6 o'clock and 12 o'clock is
called the y-axis. To spec ify where the point is, you say how far it has moved round the cir -
cle from its 3 o'clock start ing po si tion: let us call this dis tance a. We know that the cir cum fer -
ence of the cir cle is 2p (be cause its ra dius is 1 and its di am e ter is thus 2): so when it has
moved a quar ter of the way round the cir cle, a= p/2; when it has moved half way round, a= p;
and when it has moved the whole way round, a=2p.

Given the curved dis tance round the edge, a, two other dis tances you might like to know are
how far the point is to the right of the y-axis, and how far it is above the x-axis. These are called,
re spec tively, the co sine and sine of a. The func tions COS and SIN on the com puter will cal cu -
late these.

Note that if the point goes to the left of the y-axis, then the co sine be comes neg a tive; and if
the point goes be low the x-axis, the sine be comes neg a tive.

An other prop erty is that once a has got up to 2p, the point is back where it started and the
sine and co sine start tak ing the same val ues all over again:

 SIN (a+2*PI) = SIN a
 COS (a+2*PI) = COS a

The tan gent of a is de fined to be the sine di vided by the co sine; the cor re spond ing func -
tion on the com puter is called TAN.

Some times we need to work these func tions out in re verse, find ing the value of a that has
given sine, co sine or tan gent. The func tions to do this are called arcsine (ASN on the com -
puter), arccosine (ACS) and arctangent (ATN).

ZX Spectrum Next – User Manual 91

Trigonometry with SIN, COS, TAN, ASN, ACS and ATN Chapter 10 – Mathematical Functions

Fig. 14 – Basics of trigonometrical measurements

In the di a gram of the point mov ing round the cir cle, look at the ra dius join ing the cen tre
to the point. You should be able to see that the dis tance we have called a, the dis tance
that the point has moved round the edge of the cir cle, is a way of mea sur ing the an gle
through which the ra dius has moved away from the x-axis.

When a=p 2, the an gle is 90o (de grees)
When a=p, the an gle is 180o; and so round to when a=2p, and the an gle is 360o.

You might just as well for get about de grees, and mea sure the an gle in terms of a alone: we
say then that we are mea sur ing the an gle in ra di ans. Thus p 2 ra di ans=90o and so on.

You must al ways re mem ber that in NextBASIC SIN, COS and so on use ra di ans and not
de grees. To con vert de grees to ra di ans, di vide by 180 and mul ti ply by p; to con vert back
from ra di ans to de grees, you di vide by p and mul ti ply by 180.

Exercises

1. Us ing the knowl edge you have gained from this chap ter, de fine a func tion to
con vert ra di ans to de grees (this may prove very use ful to you in the fu ture).

2. In Fig. 15 above, the func tion COT ap pears while it's not part of NextBASIC's vo -
cab u lary. Write a func tion that re turns the value of the co tan gent of a us ing TAN

92 ZX Spectrum Next – User Manual

Chapter 10 – Mathematical Functions Trigonometry with SIN, COS, TAN, ASN, ACS and ATN

Fig. 15 – Graphical representation of trigonometrical functions

Random Numbers

This page intentionally left blank

Random Numbers

RANDOMIZE, RND and % RND

This chap ter deals with the func tions RND and % RND and the key word RANDOMIZE.
They are all used in con nec tion with ran dom num bers, so you must be care ful not to get
them mixed up.

As far as nor mal func tions go, RND is quite un usual: al though it does cal cu la tions and
pro duces a re sult, it does not need an ar gu ment.

Each time you use it, its re sult is a new ran dom float ing point num ber be tween 0 and 1.
(Some times it can take the value 0, but never 1.)

Try:
10 PRINT RND

20 GO TO 10

to see how the an swer var ies. Can you de tect any pat tern? You should n't be able to; ran -
dom means that there is no pat tern1.

% RND, which is – as seen on Chap ter 7 – the ver sion of RND avail able in in te ger ex pres -
sions, be haves slightly dif fer ently. It takes a sin gle ar gu ment (e.g. n) and re turns a ran dom
in te ger in the range 0 to n-1. For ex am ple, %RND 10 will re turn a ran dom in te ger be tween
0 and 9.

While RND re turns, as dis cussed above, a ran dom num ber be tween 0 and 1, you can eas ily
get ran dom num bers in other ranges. For in stance, 5*RND is be tween 0 and 5, and
1.3+0.7*RND is be tween 1.3 and 2. To get whole num bers with RND use INT (re mem ber -
ing that INT al ways rounds down) as in 1+INT (RND*6). If how ever your de sired ran dom
val ues can stay within the range of 0 to 65534, it is better to use % RND which avoids the
un nec es sary – and rather slow – float ing point cal cu la tions in volved. Let's use both in a pro -
gram to sim u late dice throw ing. RND*6 is in the range 0 to 6, but since it never ac tu ally
reaches 6, INT (RND*6) is 0,1,2,3,4 or 5.

Here is the pro gram:

10 REM dice throwing program

20 CLS

30 FOR n=1 TO 2

40 PRINT 1+INT (RND*6);" ";

50 NEXT n

60 INPUT a$: GO TO 20

Press ENTER each time you want to throw the dice. To use % RND in stead, change line
40 to read:

40 PRINT %1+ RND 6;" ";

Is n't that more read able? The RANDOMIZE state ment, is used to make RND and % RND
start off at a def i nite place in its se quence of num bers, as you can see with this pro gram:

10 RANDOMIZE 1

20 FOR n=1 TO 5: PRINT % RND

100,: NEXT n

30 PRINT: GO TO 10

ZX Spectrum Next – User Manual 95

RANDOMIZE, RND and % RND Chapter 11 – Random Numbers

1 Actually, RND is not truly random, because it follows a fixed sequence of 65536 numbers. However, these are so
thoroughly jumbled up that there are at least no obvious patterns so we say that RND is pseudo-random.

Af ter each ex e cu tion of RANDOMIZE 1, the % RND se quence starts off again with 50 and
if you use RND in stead of % RND 100, you'll get 0.0022735596. You can use other num -
bers be tween 1 and 65535 in the RANDOMIZE state ment to start the RND se quence off
at dif fer ent places.

If you had a pro gram with RND or %RND in it and it also had some mis takes that you had
not found, then it would help to use RANDOMIZE like this so that the pro gram be haved
the same way each time you ran it.

RANDOMIZE on its own (and RANDOMIZE 0 has the same ef fect) is dif fer ent, be cause it
re ally does ran dom ise RND and % RND – you can see this in the next pro gram:

10 RANDOMIZE

20 PRINT % RND 65535: GO TO

10

The se quence you get here is not very ran dom, be cause RANDOMIZE uses the time
since the com puter was switched on. Since this has gone up by the same amount each
time RANDOMIZE is ex e cuted, the next % RND does more or less the same. You would
get better ran dom ness by re plac ing GO TO 10 by GO TO 20.

Here is a pro gram to toss coins and count the num bers of heads and tails.

10 LET heads=0: LET tails=0

20 LET coin=% RND 2

30 IF coin=0 THEN LET

heads=heads+1

40 IF coin=1 THEN LET

tails=tails+1

50 PRINT heads;",";tails,

60 IF tails<>0 THEN PRINT

heads/tails;

70 PRINT: GO TO 20

The ra tio of heads to tails should be come ap prox i mately 1 if you go on long enough, be -
cause in the long run you ex pect ap prox i mately equal num bers of heads and tails.

Exercises

1. (For math e ma ti cians only.)
Let p be a (large) prime, and let a be a prim i tive root modulo p.
Then if bi is the res i due of ai modulo p (1 £ bi £ p-1), the se quence:

 bi-1
 p-1

is a cy cli cal se quence of p-1 dis tinct num bers in the range 0 to 1 (ex clud ing 1).
By choos ing a suit ably, these can be made to look fairly ran dom.
65537 is a Fermat prime, 216+1. Be cause the multi pli ca tive group of non-zero
res i dues modulo 65537 has a power of 2 as its or der, a res i due is a prim i tive
root if and only if it is not a qua dratic res i due. Use Gauss' law of qua dratic rec i -
proc ity to show that 75 is a prim i tive root modulo 65537 .
The ZX Spec trum Next uses p=65537 and a=75, and stores some bi-1 in mem -
ory. RND en tails re plac ing bi-1 in mem ory by bi+1-1, and yield ing the re sult
(bi+1-1) / (p-1).

RANDOMIZE n (with 1 £ n £ 65535) makes bi equal to n+1.
RND is ap prox i mately uni formly dis trib uted over the range 0 to 1.

96 ZX Spectrum Next – User Manual

Chapter 11 – Random Numbers RANDOMIZE, RND and % RND

Arrays

This page intentionally left blank

Arrays

DIM

Sup pose you have a list of num bers, for in stance the marks of ten peo ple in a class. To
store them in the com puter you could set up a sin gle vari able for each per son, but you
would find them very awk ward. You might de cide to call the vari able Bloggs 1, Bloggs 2,
and so on up to Bloggs 10, but the pro gram to set up these ten num bers would be rather
long and bor ing to type in.

How much nicer it would be if you could type this:

5 REM this program will not

work

10 FOR n=1 TO 10

20 READ Bloggs n

30 NEXT n

40 DATA

10,2,5,19,16,3,11,1,0,6

Well, you can't!

How ever, there is a mech a nism by which you can ap ply this idea, and it uses ar rays. An ar -
ray is a set of vari ables, its el e ments, all with the same name, and dis tin guished only by a
num ber (the sub script) writ ten in pa ren the ses af ter the name. In our ex am ple the name
could be b (like con trol vari ables of FOR ... NEXT loops, the name of an ar ray must be a
sin gle let ter), and the ten vari ables would then be b(1), b(2), and so on up to b(10).

The el e ments of an ar ray are called subscripted vari ables, as op posed to the sim ple vari -
ables that you are al ready fa mil iar with.

Be fore you can use an ar ray, you must re serve some space for it in side the com puter, and
you do this us ing a DIM (for di men sion) state ment:

DIM b(10)

sets up an ar ray called b with di men sion 10 (i.e. there are 10 subscripted vari ables
b(1),...,b(10)) and in itial ises the 10 val ues to 0. It also de letes any ar ray called b that ex -
isted pre vi ously. (But not a sim ple vari able. An ar ray and a sim ple nu mer i cal vari able with
the same name can co ex ist, and there should n't be any con fu sion be tween them be cause
the ar ray vari able al ways has a sub script). The sub script can be an ar bi trary nu mer i cal
expression, so now you can write:

5 DIM b(10)

10 FOR n=1 TO 10

20 READ b(n)

30 NEXT n

40 DATA

10,2,5,19,16,3,11,1,0,6

to read in the el e ments from a DATA list, or:

10 FOR %n=1 TO 10

20 INPUT %m(n)

30 NEXT %n

to INPUT the el e ments’ val ues by hand. Note, that in the sec ond ex am ple there is no DIM
state ment. That's be cause as dis cussed in Chap ter 2, the sec ond ar ray is an in te ger ar ray.

ZX Spectrum Next – User Manual 99

DIM Chapter 12 – Arrays

In te ger ar rays come predimensioned to a fixed 64 el e ments num bered 0 to 63. At tempt ing
to en ter a DIM state ment for %m will pro duce an au di ble tone and en ter ing the state ment
will not be successful.

If we need to use an in te ger ar ray with more than 64 el e ments, it is pos si ble al though what
changes is the way we have to ad dress them. Whereas in a nor mal in te ger ar ray the sub -
script is writ ten in side pa ren the ses () for in te ger ar rays larger-than-64-el e ments, the sub -
script is writ ten within brack ets []. Fur ther more, larger-than-64-el e ments in te ger ar rays
re duce the num ber of avail able in te ger ar rays in the sys tem as they take the en tire ar ray
that fol lows se quen tially from the one we're us ing and at tach it to the cur rent one. What this
means is that if we want to use a 128 el e ment in te ger ar ray %a[], this will take the space
from in te ger ar ray %b(). If we want to use an 192 el e ment in te ger ar ray %c[], this will use
space from in te ger ar rays %d() and %e() and so on.

The max i mum in te ger ar ray us able is 26 x 64 =1664 if us ing in te ger ar ray %a[] with no
other ar rays avail able. Note that sub se quent ar rays don't dis ap pear; they're still ac ces si -
ble car ry ing data from the in te ger ar ray that re served them. Mod i fy ing them how ever may
have un ex pected con se quences. To il lus trate this point, let's as sume an in te ger ar ray
%a[] with a de sired 128 el e ments. Write the following little program:

10 LET %a[65] = 43

20 PRINT %a[65]

30 PRINT %b(1): REM the 65th

element of array a[] is

b(1)

It's now ob vi ous how this works!

You can also set up ar rays with more than one di men sion. This does also ap ply to In te ger
Ar rays, al though they're nor mally pre de fined to have a sin gle di men sion; you'll see how be -
low. In a two-di men sional array you need two num bers to spec ify one of the el e ments –
rather like the line and col umn num bers to spec ify a char ac ter po si tion on the tele vi sion
screen – so it has the form of a table or matrix.

Al ter na tively, if you imag ine the line and col umn num bers (two di men sions) as re fer ring to
a printed page, you could have an ex tra di men sion for the page num bers. Of course, we
are talk ing about nu meric ar rays; so the el e ments would not be printed char ac ters as in a
book, but num bers. Think of the el e ments of a three-di men sional ar ray v as be ing spec i -
fied by v (page num ber, line num ber, col umn num ber).

For ex am ple, to set up a two-di men sional ar ray c with di men sions 3 and 6, you use a DIM
state ment:

DIM c(3,6)

This then gives you 3 x 6=18 subscripted vari ables:

1 2 3 4 5 6

1 c(1,1) c(1,2) c(1,3) c(1,4) c(1,5) c(1,6)

2 c(2,1) c(2,2) c(2,3) c(2,4) c(2,5) c(2,6)

3 c(3,1) c(3,2) c(3,3) c(3,4) c(3,5) c(3,6)

Ta ble 4 – Rep re sen ta tion of a two-di men sional ar ray

The same prin ci ple works for any num ber of di men sions.

Al though you can have a num ber and an ar ray with the same name, you can not have two
ar rays with the same name, even if they have dif fer ent num bers of di men sions ex cept in the
case of nor mal nu mer i cal and in te ger arrays.

100 ZX Spectrum Next – User Manual

Chapter 12 – Arrays DIM

As we men tioned above in te ger ar rays can have a sec ond di men sion as well. This fol lows
the dis cus sion of ex tend ing in te ger ar rays to larger than 64 el e ments. The tech nique is
sim i lar; If a two-di men sional in te ger ar ray is re quired, we en close sub scripts within brack -
ets []. The dif fer ence here is that sub scripts need to be in di vid u ally en closed: For ex am ple
whereas we would ad dress reg u lar ar ray c() de fined with DIM c(4,64) with c(x,y) in the
case of its in te ger coun ter part we would ad dress it as %c[x][y]. Each x di men sion takes
one en tire ar ray that fol lows the base ar ray name. For ex am ple us ing %c [x][y] with x=0 to
5 and y= 0 to 63 will use ar rays %C(),%D(),%E(),%F(),%G() and %H()

There are also string ar rays. The strings in an ar ray dif fer from sim ple strings in that they are
of fixed length and as sign ment to them is al ways Pro crus tean – chopped off or pad ded
with spaces. An other way of think ing of them is as ar rays (with one ex tra di men sion) of sin -
gle char ac ters. The name of a string ar ray is a sin gle let ter fol lowed by $, and a string ar ray
and a sim ple string vari able can not have the same name (un like the case for numbers).

Sup pose then, that you want an ar ray a$ of three strings. You must de cide how long these
strings are to be – let us sup pose that 10 char ac ters each is long enough. You then say:

DIM a$(3,10) (type this in)

This sets up a 3*10 ar ray of char ac ters, but you can also think of each row as be ing a
string:

1 2 3 4 5 6 7 8 9 10

1 a$(1) a$(1,1) a$(1,2) a$(1,3) a$(1,4) a$(1,5) a$(1,6) a$(1,7) a$(1,8) a$(1,9) a$(1,10)

2 a$(2) a$(2,1) a$(2,2) a$(2,3) a$(2,4) a$(2,5) a$(2,6) a$(2,7) a$(2,8) a$(2,9) a$(2,10)

3 a$(3) a$(3,1) a$(3,2) a$(3,3) a$(3,4) a$(3,5) a$(3,6) a$(3,7) a$(3,8) a$(3,9) a$(3,10)

Ta ble 5 – Rep re sen ta tion of a string ar ray

If you give the same num ber of sub scripts (two in this case) as there were di men sions in
the DIM state ment, then you get a sin gle char ac ter; but if you miss the last one out, then
you get a fixed length string. So, for in stance, a$(2,7) is the 7th char ac ter in the string a$(2);
us ing the slic ing no ta tion, we could also write this as a$(2)(7). Now type:

LET a$(2)="1234567890"

and:

PRINT a$(2),a$(2,7)

You get:

1234567890 7

For the last sub script (the one you can miss out), you can also have a slicer, so that for in -
stance:

a$(2,4 TO 8) = a$(2)(4 TO 8) = "45678"

Re mem ber: in a string ar ray, all the strings have the same –fixed– length. The DIM state -
ment has an ex tra num ber (the last one) to spec ify this length. When you write down a
subscripted vari able for a string ar ray, you can put in an ex tra num ber, or a slicer, to cor re -
spond with the ex tra num ber in the DIM state ment. You can have string ar rays with no di -
men sions. Type:

DIM a$(10)

and you will find that a$ be haves just like a string vari able, ex cept that it al ways has length
10, and as sign ment to it is al ways Pro crus tean.

ZX Spectrum Next – User Manual 101

DIM Chapter 12 – Arrays

Exercises

1. Use READ and DATA state ments to set up an ar ray m$ of twelve strings in which
m$(n) is the name of the nth month. (Hint: the DIM state ment will be DIM m$(12,9).
Test it by print ing out all the m$(n) (use a loop)).

2. Type:

PRINT "now is the month of

";m$(5);"ing"; " when

merry lads

are playing"

What can you do about all those spaces?

102 ZX Spectrum Next – User Manual

Chapter 12 – Arrays DIM

Conditions

Conditions

AND, OR and NOT

We saw in Chap ter 3 how an IF state ment takes the form:

IF con di tion THEN ...

The con di tions there, were the re la tions (=, <, >, <=, >= and <>), which com pare two
num bers or two strings. You can also com bine sev eral of these, us ing the log i cal op er a -
tions, AND, OR and NOT.

One re la tion AND an other re la tion is true when ever both re la tions are true, so you could
have a line like:

IF a$="yes" AND x>0 THEN PRINT x

in which x only gets printed if a$=''yes" and x>0. The syn tax here is so close to Eng lish
that it hardly seems worth spell ing out the de tails. As in Eng lish, you can join lots of re la -
tions to gether with AND, and then the whole lot is true if all the in di vid ual re la tions are.

One re la tion OR an other is true when ever at least one of the two re la tions is true. (Re mem -
ber that it is still true if both the re la tions are true; this is not al ways im plied in English).

The NOT re la tion ship turns things up side down. The NOT re la tion is true when ever the re -
la tion is false, and false when ever it is true!

Log i cal ex pres sions, can be made with re la tions and AND, OR and NOT, just as nu mer i cal
ex pres sions can be made with num bers and +, - and so on; you can even put them in pa -
ren the ses if nec es sary. They have pri or i ties in the same way as the usual op er a tions +, -,
*, / and do: OR has the low est pri or ity, then AND, then NOT, then the re la tions, and the
usual operations.

NOT is re ally a func tion, with an ar gu ment and a re sult, but its pri or ity is much lower than
that of other func tions. There fore its ar gu ment does not need pa ren the ses un less it con -
tains AND or OR (or both). NOT a=b means the same as NOT (a=b) (and the same as
a<>b, of course).

<> is the ne ga tion of = in the sense that it is true if, and only if, = is false. In other words:

 a<>b is the same as NOT a=b

and also:

 NOT a<>b is the same as a=b

Per suade your self that >= and <= are the ne ga tions of < and > re spec tively: thus you
can al ways get rid of NOT from in front of a re la tion by chang ing the re la tion.

Also:

NOT (a first log i cal ex pres sion AND a sec ond)

is the same as:

NOT (the first) OR NOT (the sec ond)

and:

NOT (a first log i cal ex pres sion OR a sec ond)

is the same as:

NOT (the first) AND NOT (the sec ond)

104 ZX Spectrum Next – User Manual

Chapter 13 – Conditions AND, OR and NOT

Us ing this, you can work NOTs through pa ren the ses un til even tu ally they are all ap plied to
re la tions, and then you can get rid of them. Log i cally speak ing, NOT is un nec es sary, al -
though you might still find that us ing it makes a program clearer.

The fol low ing sec tion is quite com pli cated, and can be skipped by the faint hearted!

Try:
PRINT 1=2,1<>2

which you might ex pect to give a syn tax er ror. In fact, as far as the com puter is con cerned,
there is no such thing as a log i cal value: in stead it uses or di nary num bers, sub ject to a few
rules.

1. =, <, >, <=, >= and <> all give nu meric re sults: 1 for true, and 0 for false.
Thus the PRINT com mand above printed 0 for 1=2, which is false, and 1 for
1<>2, which is true.

2. In: IF con di tion THEN … the con di tion can be ac tu ally any nu meric ex pres -
sion. If its value is 0, then it counts as false, and any other value (in clud ing the
value of 1 that a true re la tion gives) counts as true. Thus the IF state ment
means ex actly the same as:
IF con di tion <>0 THEN . . .

3. AND, OR and NOT are also num ber-val ued op er a tions.

x AND y has the value {

x OR y has the value {

NOT x has the value {

(No tice that true means non-zero when we're check ing a given value, but it means 1 when
we're pro duc ing a new one.)

Read through the chap ter again in the light of this rev e la tion, mak ing sure that it all works.

In the ex pres sions x AND y, x OR y and NOT x, x and y will usu ally take the val ues 0 and 1
for false and true. Work out the ten dif fer ent com bi na tions (four for AND, four for OR and
two for NOT) and check that they do what the chap ter leads you to ex pect them to do.

Try this pro gram:

10 INPUT a

20 INPUT b

30 PRINT (a AND a>=b)+(b AND

a<b)

40 GO TO 10

Each time it prints the larger of the two num bers a and b.
Con vince your self that you can think of:

x AND y as mean ing: x if y (else the re sult is 0)
and of:

x OR y as mean ing: x un less y (in which case the re sult is 1)

An ex pres sion us ing AND or OR like this is called a con di tional ex pres sion.

ZX Spectrum Next – User Manual 105

AND, OR and NOT Chapter 13 – Conditions

x if y is true (non-zero)

0 (false), if y is false (zero)

1 (true) if y is true (non-zero)

x, if y is false (zero)

0 (false), if x is true (non-zero)

1 (true), if x is false (zero)

An ex am ple us ing OR could be:

LET price=price_less_tax*(1.15 OR
v$="zero rated")

No tice how AND tends to go with ad di tion (be cause its de fault value is 0), and OR tends to
go with mul ti pli ca tion (be cause its de fault value is 1).

You can also make string val ued con di tional ex pres sions, but only us ing AND.

x$ AND y has the value {
So it means x$ if y (else the empty string).

Try this pro gram, which in puts two strings and puts them in al pha bet i cal or der:

10 INPUT "Type in two

strings"'a$,b$

20 IF a$>b$ THEN LET c$=a$:

LET a$=b$: LET b$=c$

30 PRINT a$;" ";("<" AND a$

<b$)+("=" AND a$=b$);

" ";b$

40 GO TO 10

Exercise

1. NextBASIC can some times work along dif fer ent lines from Eng lish. Con sider, for
in stance, the Eng lish clause If a does n't equal b or c. How would you write this in
NextBASIC? The an swer is not:

IF a<>b OR c

nor is it

IF a<>b OR a<>c

106 ZX Spectrum Next – User Manual

Chapter 13 – Conditions AND, OR and NOT

x$ if y is non-zero

"" if y is zero

The Character
Set

The Character Set

The let ters, dig its, punc tu a tion marks and so on that can ap pear in strings are called char -
ac ters, and they make up the al pha bet, or char ac ter set that the ZX Spec trum Next uses.
Most of these char ac ters are sin gle sym bols, but there are some more, called to kens, that
rep re sent whole words, such as PRINT, STOP, >=, <>, <= and so on.

CHR$ and CODE

There are 256 char ac ters, and each one has a code be tween 0 and 255. There is a com plete
list of them in Ap pen dix A. To con vert be tween codes and char ac ters, there are two func -
tions, CODE and CHR$. CODE is ap plied to a string, and gives the code of the first char ac -
ter in the string (or 0 if the string is empty). CHR$ is ap plied to a num ber, and gives the sin gle
char ac ter string whose code is that num ber. This pro gram prints out the en tire char ac ter set:

10 FOR a=32 TO 255: PRINT CHR$ a;: NEXT a

At the top you can see a space, 15 sym bols and punc tu a tion marks, the ten dig its, seven
more sym bols, the cap i tal let ters, six more sym bols, the lower case let ters and five more
sym bols. These are all (ex cept £ and ©) taken from a widely-used set of char ac ters known
as ASCII (stand ing for Amer i can Stan dard Codes for In for ma tion In ter change); ASCII also
as signs nu meric codes to these char ac ters, and these are the codes that the ZX Spec trum
Next uses.

The graphics symbols

The rest of the char ac ters are not part of ASCII, and are spe cific to the ZX Spec trum Next.
First amongst them are a space and 15 pat terns of black and white blobs. These are
called the graphics sym bols and can be used for draw ing ru di men tary pic tures. You can
en ter these from the key board, us ing what is called graphics mode. I

f you press GRAPHICS (CAPS SHIFT with 9) then the cur sor will change to a flash ing
white/ma genta. Now the keys for the dig its 1 to 8 will give the graphics sym bols: on their
own they give the sym bols drawn on the keys; and with ei ther shift pressed they give the
same sym bol but in verted, i.e. black be comes white, and vice versa.

Re gard less of shifts, digit 9 takes you back to nor mal mode (blue cur sor) and digit 0 is
DELETE. Here are the six teen graphics sym bols:

Sym -
bol

Cod
e

Key Sym -
bol

Cod
e

Key

128 8 143 Shift+8

129 1 142 Shift+1

130 2 141 Shift+2

131 3 140 Shift+3

132 4 139 Shift+4

133 5 138 Shift+5

134 6 137 Shift+6

135 7 136 Shift+7

Ta ble 6 – Graphics Sym bols

108 ZX Spectrum Next – User Manual

Chapter 14 – The Character Set CHR$ and CODE

BIN and USR

Af ter the graphics sym bols, you will see what ap pears to be an other copy of the al pha bet
from A to U. These are char ac ters that you can re de fine your self, al though when the ma -
chine is first switched on they are set as let ters – they are called user-de fined graphics.
You can type these in from the key board by go ing into graphics mode, and then us ing the
let ters keys from A to U.

To de fine a new char ac ter for your self, fol low this rec ipe – it de fines a char ac ter to show
the math e mat i cal sym bol S (Greek for Sunolo=sum).

i. Work out what the char ac ter looks like. Each char ac ter has an 8x8 square of
dots, each of which can show ei ther the pa per col our or the ink col our (see
Chap ter 16 re gard ing INK and PAPER). You'd draw a di a gram some thing like
this, with black squares for the ink colour:

We've left a 1 square mar gin round the edge be cause the other let ters all
have one (ex cept for lower case let ters with tails, where the tail goes right
down to the bot tom of the square).

ii. Work out which user-de fined graphic is to show - let's say the one cor re -
spond ing to S, so that if you press S in graphics mode you get S on your
screen.

iii. Store the new pat tern. Each user-de fined graphic has its pat tern stored as
eight num bers, one for each row. You can write each of these num bers as
BIN fol lowed by eight 0s or 1s – 0 for pa per, 1 for ink – so that the eight num -
bers for our char ac ter are:

BIN 00000000

BIN 01111100

BIN 00100010

BIN 00010000

BIN 00010000

BIN 00100010

BIN 01111110

BIN 00000000

(If you know about bi nary num bers, then it should help you to know that BIN is used to
write a num ber in bi nary in stead of the usual dec i mal.)

ZX Spectrum Next – User Manual 109

BIN and USR Chapter 14 – The Character Set

These eight num bers are stored in mem ory, in eight places, each of which has an ad -
dress. The ad dress of the first byte, or group of eight dig its, is USR "S" (S be cause that is
what we chose in (ii)), that of the sec ond is USR "S"+1, and so on up to the eighth, which
has ad dress USR "S"+7.

USR here is a func tion to con vert a string ar gu ment into the ad dress of the first byte in
mem ory for the cor re spond ing user-de fined graphic. The string ar gu ment must be a sin -
gle char ac ter which can be ei ther the user-de fined graphic it self or the cor re spond ing let -
ter (in up per or lower case). There is an other use for USR, when its ar gu ment is a num ber,
which will be dealt with in subsequent chapters.

Even if you don't un der stand this, the fol low ing pro gram will do it for you:

5 FOR n=0 TO 7

10 READ row: POKE USR

"S"+n,row

15 NEXT n

20 DATA BIN 00000000

25 DATA BIN 01111100

30 DATA BIN 00100010

35 DATA BIN 00010000

40 DATA BIN 00010000

45 DATA BIN 00100010

50 DATA BIN 01111110

60 DATA BIN 00000000

The above ex am ple can also be re writ ten us ing in te ger vari ables with out the use of BIN
while still ex press ing the graphic ma trix in bi nary form. Can you re state it per what you've
learned?

POKE and PEEK

The POKE state ment stores a num ber di rectly in a mem ory lo ca tion, by pass ing the mech -
a nisms nor mally used by NextBASIC. The op po site of POKE is PEEK, and this al lows us
to look at the con tents of a mem ory lo ca tion al though it does not ac tu ally al ter the con tents
of that lo ca tion. They will be dealt with prop erly in Chap ter 24.

Af ter the user-de fined graphics come the to kens.

You will have no ticed that we have not printed out the first 32 char ac ters, with codes 0 to 31.
These are con trol char ac ters or as com monly re ferred to: con trol codes. They ei ther don't pro -
duce char ac ters on screen, al though they do have an ef fect on what's printed there, or, al ter -
na tively, they are used to con trol some thing other than the dis play it self, and the screen
dis plays ? to show that it does n't un der stand them. They are de scribed more fully in Ap pen dix
A.

Three that the screen out put uses, are those with codes 6, 8 and 13; on the whole, CHR$ 8
is the one you are likely to find most use ful.

CHR$ 6 prints spaces in ex actly the same way as a comma does in a PRINT state ment;
for in stance:

PRINT 1; CHR$ 6;2

does the same as:

PRINT 1,2

Ob vi ously this is not a very clear way of us ing it. A more sub tle way is to say:

110 ZX Spectrum Next – User Manual

Chapter 14 – The Character Set POKE and PEEK

LET a$="1"+CHR$ 6+"2"

PRINT a$

CHR$ 8 is back space: it moves the print po si tion back one place – try:

PRINT "1234";CHR$ 8;"5"

which prints up:

1235

As 5 takes the place of 4 from the string printed in the first part of the PRINT state ment.

CHR$ 13 is car riage re turn: it moves the print po si tion on to the be gin ning of the next line.

Ef fec tively:

PRINT "1234";CHR$ 13;"5678"

is the same as:

PRINT "1234":PRINT "5678"

It may not be im me di ately ap par ent why you would n't do the lat ter but it's pos si ble also to
do:

LET a$="1234"+CHR$ 13+ "5678"

PRINT a$

In which case you can see the use ful ness of a sin gle car riage re turn char ac ter.

The screen also uses those with codes 16 to 23; these are ex plained in Chap ters 15 and
16. All the con trol codes are listed in Ap pen dix A.

Us ing the codes for the char ac ters we can ex tend the con cept of al pha bet i cal or der ing to
cover strings con tain ing any char ac ters, not just let ters. If in stead of think ing in terms of
the usual al pha bet of 26 let ters we use the ex tended al pha bet of 256 char ac ters, in the
same or der as their codes, then the prin ci ple is ex actly the same. For in stance, these
strings are in their ZX Spec trum Next al pha bet i cal or der: (No tice the rather odd fea ture
that lower case let ters come af ter all the cap i tals: so a co mes af ter Z; also, spaces mat ter.)

CHR$ 3+"ZOOLOGICAL GARDENS"
CHR$ 8+"AARDVARK HUNTING"
" AAAARGH!"
"(Parenthetical remark)"
"100"
"129.95 inc. VAT"
"AASVOGEL"
"Aardvark"
"PRINT"
"Zoo"
"[interpolation]"
"aardvark"
"aasvogel"
"zoo"
"zoology"

Here is the rule for find ing out which or der two strings come in. First, com pare the first
char ac ters. If they are dif fer ent, then one of them has its code less than the other, and the
string it came from is the ear lier (lesser) of the two strings. If they are the same, then go on
to com pare the next char ac ters. If in this pro cess one of the strings runs out be fore the
other, then that string is the ear lier, oth er wise they must be equal.

ZX Spectrum Next – User Manual 111

POKE and PEEK Chapter 14 – The Character Set

The re la tions =, <, >, <=, >= and <> are used for strings as well as for num bers: <
means co mes be fore and > means co mes af ter, so that:

"AA man"<"AARDVARK"
"AARDVARK">"AA man"

are both true.

<= and >= work the same way as they do for num bers, so that:

"The same string"<="The same string"

is true, but:

"The same string"<"The same string"

is false.

Ex per i ment on all this us ing the pro gram here, which in puts two strings and puts them in
or der.

10 INPUT "Type in two

strings:", a$, b$

20 IF a$>b$ THEN LET c$=a$:

LET a$=b$: LET b$=c$

30 PRINT a$;" ";

40 IF a$<b$ THEN PRINT "<";:

GO TO 60

50 PRINT "=";

60 PRINT " ";b$

70 GO TO 10

Note how we have to in tro duce c$ in line 20 when we swap over a$ and b$, as

LET a$=b$: LET b$=a$

would not have the de sired ef fect.

This pro gram sets up user-de fined graphics to show chess pieces:

P for pawn
R for rook
N for knight
B for bishop
K for king
Q for queen

Chess pieces

5 LET b=BIN 01111100: LET

c=BIN 00111000:

LET d=BIN 00010000

10 FOR n=1 TO 6: READ p$: REM

6 pieces

20 FOR f=0 TO 7: REM read

piece into 8 bytes

30 READ a: POKE USR p$+f,a

40 NEXT f

50 NEXT n

112 ZX Spectrum Next – User Manual

Chapter 14 – The Character Set POKE and PEEK

100 REM bishop

110 DATA "b",0,d, BIN

00101000,BIN 01000100

120 DATA BIN 01101100,c,b,0

130 REM king

140 DATA "k",0,d,c,d

150 DATA c, BIN 01000100,c,0

160 REM rook

170 DATA "r",0, BIN

01010100,b,c

180 DATA c,b,b,0

190 REM queen

200 DATA "q",0, BIN 01010100,

BIN 00101000,d

210 DATA BIN 01101100,b,b,0

220 REM pawn

230 DATA "p",0,0,d,c

240 DATA c,d,b,0

250 REM knight

260 DATA "n",0,d,c, BIN

01111000

270 DATA BIN 00011000,c,b,0

Note that 0 can be used in stead of BIN 00000000.

When you have run the pro gram, look at the pieces by go ing into graphics mode.

Alternative Character Sets

As we are go ing to see in Chap ter 21 – Chan nels, Streams and Win dows the ZX Spec trum
Next pro vides via its win dow ing sys tem, the abil ity to dis play al ter na tive char ac ter sets. In
or der to set up how ever an al ter na tive char ac ter set, char ac ters have to be de fined some -
where in mem ory, very sim i larly to the way we did the chess pieces or the S sym bol above.
The char ac ters re de fined are lim ited to the 96 from code 32 un til code 127 and should be
in that or der. A suc ces sive se ries of 768 POKE state ments in cre ment ing the mem ory ad -
dress by one lo ca tion at the time, will de fine them and then a last POKE al ter ing the
CHARS sys tem vari able (See Chap ter 25 – Sys tem Vari ables) will point NextBASIC to the
location of this new character set.

Character Graphics Mode

In the fol low ing chap ter, we will be in tro duced to Layer 3 – the Char ac ter Graphics mode;
this is a hy brid graphics mode based around the no tion of a char ac ter tile, that is to say an
8 ´ 8 pixel ma trix very much like the ones we ex plored above with User De fined Graphics
with four very cru cial differences:

• Each character tile can have up to sixteen colours and not only two.

• All ASCII characters can be defined by tiles giving the user in effect a truly
multi-lingual character display.

• Layer 3 displays can be either 80 columns by 32 rows or 40 columns by 32 rows
and not only 32 columns by 24 rows as the regular Spectrum display is.

• Layer 3 cannot be accessed from NextBASIC (at the time of writing) in the same,
straightforward way, other modes/layers are. You will need to write functions
and procedures that utilise the PEEK, POKE, IN, OUT and REG facilities as well
as the BANK commands at your disposal in order to make use of this powerful
mode.

ZX Spectrum Next – User Manual 113

Alternative Character Sets Chapter 14 – The Character Set

Layer 3 has other uses as well and we will be dis cuss ing those in the fol low ing 3 chap ters.

Exercises

1. Imag ine the space for one sym bol di vided up into four quar ters like a Battenburg
cake. Then if each quar ter can be ei ther black or white, there are 2 x 2 x 2 x 2=16
pos si bil i ties. Find them all in the char ac ter set.

2. Run this pro gram:

10 INPUT a

20 PRINT CHR$ a;

30 GO TO 10

If you ex per i ment with it, you'll find that CHR$ a is rounded to the near est whole
num ber; and if a is not in the range 0 to 255 then the pro gram stops with er ror
re port:

B in te ger out of range.

3. Which of these two is the lesser?

"EVIL"

"evil"

114 ZX Spectrum Next – User Manual

Chapter 14 – The Character Set Character Graphics Mode

More about
PRINT and INPUT

More about PRINT and INPUT

Coordinate Systems

Be fore we go into more de tail about how we can ex er cise a bit more con trol on PRINT and
INPUT it is use ful to un der stand a lit tle bit about the way NextBASIC views char ac ter po si -
tion ing on the screen. Due to the re quire ments for back wards com pat i bil ity with pre vi ous
Sinclair com put ers, NextBASIC uses two dis tinct co or di nate sys tems to keep track of
where text is in put or outputted. The first –or leg acy– sys tem is based on a vir tual ma trix
that ex ists on screen and or gan ises it in rigid rows and col umns. The sec ond, is more pre -
cise and al lows for freely po si tioned col umns and rows along the x and y-axes. Ad di tion -
ally the leg acy co or di nate sys tem has been ex tended to al low for di rect ma nip u la tion of
the footer bar and sta tus area for lay ers other than Layer 0, which is not normally possible
in the legacy system.

Screen Modes and Pixel Coordinates

In or der to make a con crete dis tinc tion be tween the two co or di nate sys tems, we should
first dis cuss a lit tle bit about the ZX Spec trum Next's dis play sys tem. We will re visit this
again in Chap ters 16 and 17 in more de tail as these chap ters deal with the full graphics ca -
pa bil i ties of the com puter rather than the sub set ded i cated to screen char ac ter ma nip u la -
tion, but for now let's enu mer ate the screen modes in a simple fashion.

The ZX Spec trum Next has 8 dis tinct graphics modes bro ken into 4 groups –or lay ers–
with an ad di tional Sprite Layer which, since it's an in de pend ent sub sys tem, we will not be
cov er ing in this chap ter . These modes are ac cessed us ing the LAYER com mand with the
ex cep tion of Layer 3 (Char ac ter Graphics) and they are the fol low ing:

• Layer 0
4 Layer 0 – Stan dard Spec trum (ULA) mode, 256 w x 192 h pix els, 8 colours

to tal (2 in ten si ties), 32 x 24 cells, each ca pa ble of dis play ing 2 colours

• Layer 1
4 Layer 1, 0 – LoRes (En hanced ULA) mode, 128 w x 96 h pix els, 256 colours

to tal, 1 col our per pixel
4 Layer 1, 1 – Stan dard Res (En hanced ULA) mode, 256 w x 192 h pix els,

256 colours to tal, 32 x 24 cells, each ca pa ble of dis play ing 2 colours
4 Layer 1, 2 – Timex HiRes (En hanced ULA) mode, 512 w x 192 h pix els,

256 colours to tal, only 2 colours on screen
4 Layer 1, 3 – Timex HiColour (En hanced ULA) mode, 256 w x 192 h pix els,

256 colours to tal, 32 x 192 cells, each ca pa ble of dis play ing 2 colours

• Layer 2
4 Layer 2 – 256 w x 192 h pix els, 256 colours to tal, one col our per pixel

• Layer 3
4 Layer 3,0 – Text mode, 320 w x 256 h pix els, 256 colours to tal,

40 x 32 cells each ca pa ble of dis play ing 2 colours
4 Layer 3,1 – Text mode, 640 w x 256 h pix els, 256 colours to tal,

80 x 32 cells, each ca pa ble of dis play ing 2 colours
4 Layer 3,2 – Graphics mode, 320 w x 256 h pix els, 256 colours to tal,

40 x 32 cells each ca pa ble of dis play ing 16 colours
4 Layer 3,3 – Graphics mode, 640 w x 256 h pix els, 256 colours to tal,

80 x 32 cells, each ca pa ble of dis play ing 16 colours

Layer 3 is not cur rently avail able to PRINT and INPUT and there fore won't be dis cussed in
this chap ter; it is men tioned here for com plete ness.

Tech ni cally speak ing, Layer 1,1 is the same as Layer 0 with ex tra col our ca pa bil i ties how -
ever NextBASIC treats them dif fer ently to main tain a con sis tent way of ad dress ing the ex -

116 ZX Spectrum Next – User Manual

Chapter 15 – More about PRINT and INPUT Coordinate Systems

tra ca pa bil i ties of the ZX Spec trum Next's En hanced ULA. The leg acy co or di nate sys tem
we dis cussed above ap plies only on Layer 0, whereas Lay ers 1 and 2 use the new system.

There are three ma jor dif fer ences be tween Layer 0 and Lay ers 1 and 2 as far as char ac ter
po si tion ing goes. There are more dif fer ences but we will ex am ine these in turn in the spe -
cial graphics Chap ters 16 – 18. These are:

1. Layer 0 is or gan ised in a strict 32 col umns by 24 rows ma trix while the rest can
both po si tion char ac ters ac cord ing to a sim i lar ma trix (ac cord ing to char ac ter
size), or, if so de sired, any where along the y and x axes.

2. The user can not –nor mally– po si tion char ac ters on the two bot tom rows of the
Layer 0 screen while this is pos si ble in the other lay ers.

3. Layer 0 pixel co or di nates be gin at the bot tom left cor ner and ex tend up and to
the right while for the rest of the lay ers, pixel co or di nates be gin at the top left
cor ner and ex tend down and to the right. This par tic u lar dif fer ence is not im por -
tant for char ac ter place ment on Layer 0 but it is for the rest of the lay ers and def i -
nitely, as we are go ing to see fur ther down this man ual, ex tremely im por tant for
positioning graphics.

Changing the size of characters

With the ex cep tion of Layer 0, which has, as we men tioned, a rigid or gani sa tion of char ac -
ter po si tions on screen in a 32 x 24 char ac ter ma trix, all other lay ers have the abil ity to po si -
tion char ac ters ei ther rig idly as above (ie. in a rows x col umns ma trix) or freely ac cord ing to
pixel po si tion of each char ac ter ma trix's top left cor ner.
Char ac ter size can be mod i fied hor i zon tally with the following sequence:

PRINT CHR$ 30; CHR$ n;

where n can be a number from 3 to 8, which sets the width of all characters displayed
on screen from a minimum of 3 to a maximum of 8 pixels wide. Character size is
modified vertically by issuing:

PRINT CHR$ 29; CHR$ n;

where n can be a number from 0 to 3, which sets the height of all characters displayed
on screen to the following predetermined heights in pixels:

Value of n Size (pixels) Description

0 8 Normal Size
1 16 Double Size
2 6 Reduced Size
3 12 Double Reduced Size

These se quences which are more ap pro pri ately called con trol codes, are char ac ter size
short cuts for text win dows. These can also be used on Layer 0 but you would need to open
a win dow first when in that mode. The rest of the lay ers have pre de fined and pre-opened
full-screen text win dows and there fore these con trol codes work there by de fault. We will
dis cuss text win dows at length in Chap ter 21 – Chan nels, Streams and Win dows so for now
keep these two con trol codes in mind as only work ing out side Layer 0. They are ex tremely
im por tant to know, as they mod ify the be hav iour of the AT and TAB mod i fi ers we will
examine below.

Using AT to print to a certain location

You have al ready seen PRINT used quite a lot, so you will have a rough idea of how it is
used. Ex pres sions whose val ues are printed are called PRINT items, and they are sep a -
rated by com mas, semi co lons and apos tro phes, which are called PRINT sep a ra tors. A
PRINT item can also be noth ing at all, which is a way of ex plain ing what hap pens when you
use two commas in a row.

ZX Spectrum Next – User Manual 117

Changing the size of characters Chapter 15 – More about PRINT and INPUT

There are two more kinds of PRINT items, which are used to tell the com puter not what, but
where to print. For ex am ple PRINT AT 11,16;"*" prints a star in the mid dle of the screen in
Layer 0. The mod i fier

AT vertical_position, horizontal_position

moves the PRINT po si tion (the place where the next item is to be printed) to the ver ti cal
and hor i zon tal po si tion spec i fied. Hor i zon tal po si tions are mea sured in col umns and ver ti -
cal po si tions in rows how ever for lay ers other than Layer 0, the num ber of col umns and
rows var ies ac cord ing to the size of char ac ters used (and for HiRes mode the hor i zon tal
res o lu tion as well). Char ac ter sizes are set ac cord ing to the pre vi ous sec tion, how ever for
AT us age pur poses, we need to note that dou ble-width and dou ble-height char ac ter sizes
do not mod ify the max i mum col umns and rows AT will ac cept as pa ram e ters, so if for ex -
am ple you use PRINT CHR$ 29; CHR$ 1 for char ac ters that are 16 pix els high, you will still
get a max i mum of 24 rows for AT purposes.

You may have no ticed at the be gin ning of this chap ter that we dis cussed Layer 0 as be ing
or gan ised for char ac ter print ing pur poses, in a ma trix of 24 rows by 32 col umns. As you
will see how ever when in Layer 0, NextBASIC will not give you ac cess to the last two rows
since, as we dis cussed in Chap ter 1, the bot tom two rows of the screen are re served. This
is also true for bitmap graphics com mands as you will see in Chap ters 17 and 18. We will
ex pand fur ther on the pos si ble com bi na tions for AT but for now give the command:

PRINT AT 22,31;"*"

and you will im me di ately re ceive er ror 5 Out of screen, 0:1. It's not dif fi cult to un der stand
why that hap pened. As we will see in Fig. 16 be low, for the pur poses of print ing via
NextBASIC1, your ZX Spec trum Next has a ver ti cal res o lu tion of 192 pix els. Now since, as
we learned in Chap ter 14, each char ac ter is 8 pix els high, we can make a quick di vi sion
and see that 192 ̧ 8 = 24. Know ing that the two last lines are re served and not ac ces si ble
to us, we can re duce our avail able rows by a fur ther 16 pix els (or 2 rows) so we get a to tal
22 rows. Now, be cause your com puter starts count ing from zero, 22 rows would go up to
21 as a value, which in turn explains why you received the error.

Rows on which we can place out put us ing AT, are num bered there fore from 0 (at the top)
to 21, and col umns from 0 (on the left) to 31.

This sit u a tion changes when we change lay ers and go to the other two groups (re mem ber
that Layer 3 is ex cluded). As dis cussed pre vi ously, col umns and rows on these are cal cu -
lated ac cord ing to the width of char ac ters that we have se lected with the con trol codes.
Be fore we il lus trate graph i cally how the screen is or gan ised, the fol low ing ta ble will give
you the pos si ble com bi na tions in col umns per char ac ter width. Re mem ber that you can
also fig ure this out on your own by di vid ing the max i mum res o lu tion of the layer you're
using by the selected character width.

Num ber of col umns per Layer

Char ac ter
width
(in px)

LoRes
Layer 1,0

(128 x 96)

HiRes
Layer 1,2

(512 x 192)

Stan dard Res
Lay ers: 1,1–1,3 – 2

(256 x 192)
3 42 170 85
4 32 128 64
5 25 102 51
6 21 85 42
7 18 73 36
8 16 64 32

Ta ble 7 – Col umn po si tions for PRINT ac cord ing to char ac ter size

Ta ble 7 above, showed us that al though we could pack our screen with 170 char ac ters per

118 ZX Spectrum Next – User Manual

Chapter 15 – More about PRINT and INPUT Using AT to print to a certain location

1 The maximum screen resolution of the ZX Spectrum Next is 320 x 256 pixels (or 640 x 256 half-width pixels), however
these resolutions are only available to Layer 3 and Sprite Layers as we will see in the following chapters.

line, in prac tice 3 pixel wide fonts are al most un read able, even at the high est avail able
res o lu tion of Layer 1,2. In the ex am ple pro gram that's meant to dem on strate char ac ter
cells for the AT mod i fier (but writ ten us ing the POINT mod i fier strangely enough!) we're in -
clud ing be low, you can see all the pos si ble com bi na tions for all lay ers.

The au thor's per sonal pref er ence is the 128 col umn text of HiRes Layer 1,2 as it's clear
enough to read but not too big as to not be able to fit a lot of in for ma tion onto your screen.

ZX Spectrum Next – User Manual 119

Using AT to print to a certain location Chapter 15 – More about PRINT and INPUT

Fig. 17 – LoRes and Standard Resolution coordinate system for PRINT and INPUT

Fig. 16 – Layer 0 coordinate system for PRINT and INPUT

Using POINT to print to a certain location

In Fig. 16 above, we see the main dif fer ence be tween PRINT items on Layer 0 and the other
lay ers and that's none other than the pre vi ously men tioned abil ity to place them in any X
and Y co or di nate we please. This di a gram as sumes a stan dard 8x8 char ac ter size but
where you only saw rows in Fig. 15, here you also see a pixel value. This cor re sponds to
the place ment of each row and col umn in Layer 0 but in fact, it could be any thing within the
bound aries of the hor i zon tal and ver ti cal res o lu tion. Let's switch lay ers and try to do the
same thing:

LAYER 1,1:PRINT POINT 248,176;"*"

Un like be fore you'll will not get an 5 Out of screen, 0:1 er ror and you will get an as ter isk at
the rightmost edge of the screen like we ex pected to get the first time we gave the PRINT
AT 22,31 com mand. The two val ues cor re spond to 22 times the char ac ter height and 31
times the char ac ter width (both of which are 8 pix els). You can see at the same time the
no tion of the free place ment of char ac ters as the ad dress ing of the lo ca tion is now in pix -
els and not the fixed rows and col umns. What's also im me di ately vis i ble is that ad dress ing
the lo ca tion on screen in pixel co or di nates is dif fer ent as it re verses the or der of the lo ca -
tion pa ram e ters from y,x to x,y and that's done to match the syn tax of the rest of the
graphics com mands that ac cept pixel co or di nates as pa ram e ters . To rep li cate the be hav -
iour of the first PRINT AT com mand on Layer 0 and get an er ror, we will need to place the
out put of print, outside the boundaries of the screen like so:

LAYER 1,1: PRINT POINT 256,0;"*"

would pro duce the same ex act er ror. To prop erly cal cu late where to print if you want to keep
your co or di nates cell-based in stead of pixel-based, a sim ple func tion could do that for you
quite eas ily. In Fig. 17 as well as Fig. 18 we've done that for you as sum ing a stan dard font,
but what about a shorter, or per haps taller font? It's quite sim ple if you keep in mind that, if
you fol low the heights de fined ear lier, you can find ex actly how many rows and col umns you
can fit in your screen. Note that POINT's ar gu ments must not be gin with a pa ren the sis be -
cause it will be eval u ated as a func tion and at tempt ing to store the line you're typ ing will fail.

The fol low ing –very slow– pro gram dem on strates ex actly how things are po si tioned on
screen with ev ery change in Layer and fur ther more gives you some in sight on how PRINT

120 ZX Spectrum Next – User Manual

Chapter 15 – More about PRINT and INPUT Using POINT to print to a certain location

Fig. 18 – High Resolution coordinate system for PRINT and INPUT

POINT as well as –in di rectly– PRINT AT is af fected ev ery time your screen mode changes.
Try to walk through the pro gram to fig ure out how it op er ates:

10 REM First we disable LAYER

2 and then we set Standard

ULA Display Mode

20 LAYER 2,0

30 LAYER 0

40 LET MaxX=128

50 LET MaxY=96

70 LET mul=1

80 LET div=1

90 LET add=0

100 LET chsz=8

110 LET h=8

120 FOR m=0 TO 5

130 LET n=0

140 LET d=1

150 IF m=0 THEN GO TO 370: REM

Layer 0 not supported by

PRINT POINT

160 FOR a=3 TO 8

180 FOR b=0 TO 3

190 LET n=0

200 LET d=1

210 PROC LayChange(m,a,b)

220 FOR r=0 TO (MaxY*mul)-1

STEP h

230 FOR c=0 TO (MaxX*mul)-chsz

STEP chsz

235 LET row = (r+add)/div

240 IF r=0 AND c<>0 THEN PRINT

POINT

c,row;d : LET d=d+1

250 IF c=0 AND r=0 THEN PRINT

POINT

c,row;n : LET n=n+1

260 IF c=0 AND r<>0 THEN PRINT

POINT

c,row;n : LET n=n+1

270 IF c<>0 AND r<>0 THEN PRINT

POINT

c,row;"*"

280 IF n=10 THEN LET n=0

290 IF d=10 THEN LET d=0

300 NEXT c

310 IF c=1 THEN LET n=0

320 NEXT r

330 PAUSE 0

340 IF m=0 THEN GO TO 370

350 NEXT b

ZX Spectrum Next – User Manual 121

Using POINT to print to a certain location Chapter 15 – More about PRINT and INPUT

360 NEXT a

370 NEXT m

380 LAYER 0

390 LAYER 2,0

400 STOP

1000 DEFPROC

LayChange(mode,ch,he)

1010 LET div=1

1020 LET add=0

1030 LET maxX=128

1040 LET maxY=96

1050 LET mul=2

1060 LET chsz=ch

1070 IF he=0 THEN LET h=8

1080 IF he=1 THEN LET h=16

1090 IF he=2 THEN LET h=6

1100 IF he=3 THEN LET h=12

1110 REM Layer 0 is not covered

as PRINT

POINT doesn't work there

1120 IF mode=1 THEN LAYER 1,0:

CLS : LET mul=1: PRINT

CHR$ 30; CHR$ ch: PRINT

CHR$ 29; CHR$ he: PRINT AT

0,0;"LoRes"''"CSIZE (HxW)

";h;" x ";chsz'"PRESS ANY

KEY": PAUSE 0: CLS :

ENDPROC

1130 IF mode=2 THEN LAYER 1,1:

CLS : PRINT CHR$ 30; CHR$

ch: PRINT CHR$ 29; CHR$

he: PRINT AT 0,0;"Enhanced

ULA"'"CSIZE (HxW) ";h;

" x ";chsz'"PRESS ANY KEY"

:PAUSE 0: CLS : ENDPROC

1140 IF mode=3 THEN LAYER 1,2:

CLS : LET MaxX=256: PRINT

CHR$ 30; CHR$ ch: PRINT

CHR$ 29; CHR$ he: PRINT AT

0,0;"Timex HiRES"'"CSIZE

(HxW) ";h;" x ";chsz'

"PRESS ANY KEY": PAUSE 0:

CLS : ENDPROC

1150 IF mode=4 THEN LAYER 1,3:

CLS : PRINT CHR$ 30; CHR$

ch: PRINT CHR$ 29; CHR$

he: PRINT AT 0,0;"Timex

HiColour"'"CSIZE (HxW)

";h;" x ";chsz'"PRESS ANY

KEY": PAUSE 0: CLS :

ENDPROC

122 ZX Spectrum Next – User Manual

Chapter 15 – More about PRINT and INPUT Using POINT to print to a certain location

1160 IF mode=5 THEN LAYER 2,1:

CLS : PRINT CHR$ 30; CHR$

ch: PRINT CHR$ 29; CHR$ he:

PRINT AT

0,0;"Layer2"'"CSIZE (HxW)

";h;" x ";chsz'"PRESS ANY

KEY": PAUSE 0: CLS :

ENDPROC

SCREEN$

SCREEN$ is the re verse func tion to PRINT AT, and will tell you (within lim its) what char ac -
ter is at a par tic u lar po si tion on the screen. It uses line and col umn num bers in the same
way as the Layer 0 ver sion of PRINT AT, but en closed in pa ren the ses. For instance:

PRINT SCREEN$ (11,16)

will re trieve the star you printed in the first ex am ple of the pre vi ous sec tion. SCREEN$ only
works on Layer 0 and will re turn ev ery thing printed there, even if you switch lay ers dur ing
the pro cess as long as the mem ory used (which is shared be tween Lay ers 0, 1 and 3 as
you will see in Chap ter 24) has not been over writ ten by an other dis play re lated command.
Type:

10 LAYER 0:PRINT AT 11,11;"*"

20 LAYER 1,0:PRINT AT

0,0;SCREEN$ (11,11)

You will get a huge * on the up per left cor ner of your screen even if the orig i nal * is not vis i -
ble any more on screen. Chang ing line 10 to LAYER 1,0 from LAYER 0 will pro duce a null
string.

Char ac ters taken from to kens print nor mally, as sin gle char ac ters, and spaces re turn as
spaces. Lines drawn by PLOT, DRAW or CIRCLE, user-de fined char ac ters and graphics
char ac ters re turn as a null (empty) string, how ever. The same ap plies if OVER (See Chap -
ter 16) has been used to cre ate a com pos ite char ac ter. The way that SCREEN$ works is
that it matches the char ac ter in a screen lo ca tion to the bitmapped im age of the char ac ter
in the ROM of NextZXOS. If they match it will re turn it. If the pic ture in the lo ca tion does n't
match any known char ac ter it will return an empty string.

TAB

If you're fa mil iar with word pro cess ing, other com put ers, or even type writ ers, you may be
also fa mil iar with the con cept of a tab, or tab u lat ing char ac ter. What this does in other
com put ers is to in sert a spe cial char ac ter which will move the cur sor right by a pre de ter -
mined amount of lo ca tions in or der to ar rive to a spe cific col umn in your text. The ZX Spec -
trum Next, does n't quite work like this al though the end ing re sult on your screen is pretty
much equivalent. The modifier:

TAB col umn

prints enough spaces to move the PRINT po si tion to the col umn spec i fied. It stays on the
same line, or, if this would in volve back spac ing, moves on to the next one. Note that the
com puter re duces the col umn num ber modulo X with X be ing the max i mum amount of col -
umns avail able per the width of char ac ter cho sen for each Layer (mean ing it di vides by X
and takes the re main der); so for ex am ple for Layer 0, TAB 33 means the same as TAB 1.

The code:

PRINT TAB 30;1;TAB 12;"Contents"; AT
3,1;"CHAPTER";TAB 24;"page"

ZX Spectrum Next – User Manual 123

SCREEN$ Chapter 15 – More about PRINT and INPUT

dem on strates, how you might print out the head ing of a con tents page on page 1 of a
book (if that book was dis played us ing ZX Spec trum Next char ac ters of course!)

Try run ning this:

10 FOR n=0 TO 20

20 PRINT TAB 8*n;n;

30 NEXT n

This shows what is meant by the TAB num bers be ing re duced modulo X. For a more el e -
gant ex am ple, change the 8 in line 20 to a 6 or even try to im ple ment this on a dif fer ent
layer such as the HiRes one as it al lows more room for dem on stra tion of this func tion al ity
by add ing LAYER 1,2 before line 10.

As you'll see in Chap ter 21, TAB ac cepts a two-byte pa ram e ter which means it ac cepts a
max i mum col umn num ber of 65535! Not that you'd ever want to use that!

Some small points:

1. These new items are best ter mi nated with semi co lons, as we have done above.
You can use com mas (or noth ing, at the end of the state ment), but this means
that af ter hav ing care fully set up the PRINT po si tion, you im me di ately move it on
again which would n't usu ally be ter ri bly useful.

2. As a re minder, you can not print on the bot tom two rows (22 and 23) on the
Layer 0 screen be cause they are re served for com mands, INPUT data (see be -
low), re ports/er rors and so on. Ref er ences to the bot tom line usu ally mean line
21 and only ap ply to Layer 0.

3. You can use AT to put the PRINT po si tion even where there is al ready some -
thing printed; the old stuff will be oblit er ated when you print more.

CLS

An other state ment that's con nected with PRINT (al though it's not only lim ited to it), is CLS.
This clears the whole screen, some thing that is also done by CLEAR and RUN. The
LAYER com mand does not clear the screen how ever, al though it may switch to a new
screen that has noth ing on it. Do not as sume a Layer is free of stuff just be cause you have -
n't used a com mand that out puts some thing on screen. Al ways give CLS af ter switch ing
lay ers if you want to en sure a screen free of anything on it.

Scrolling

When the print ing reaches the bot tom of the screen, the lat ter moves its con tents up -
wards, to clear room on the bot tom for new con tent. You can see this if you go into the sta -
tus area by us ing the Edit menu op tion Screen and then type:

CLS: FOR n=1 TO 22: PRINT n:

NEXT n

and then do:

PRINT 99

a few times.

De pend ing on the layer you are on, the com puter may pause its screen out put for you to
re view the con tent be ing printed and ask you a ques tion or may sim ply dis play a block
cur sor at the lower right cor ner and wait.

124 ZX Spectrum Next – User Manual

Chapter 15 – More about PRINT and INPUT CLS

On Layer 0, if the com puter is print ing out reams and reams of stuff on screen, it asks you
be fore con tin u ing. You can see this hap pen ing if you type:

CLS: FOR n=1 TO 100: PRINT n:

NEXT n

When it has printed a screenful, it will stop, writ ing scroll? at the bot tom of the screen. You
can now in spect the first 22 num bers at your lei sure. When you have fin ished with them,
press y (for yes) and the com puter will give you an other screen full of num bers. Ac tu ally,
any key will make the com puter carry on ex cept n (for no), SYMBOL SHIFT and A (for
STOP as you can see printed on your ZX Spec trum Next's key board2), SPACE, BREAK (or
CAPS SHIFT and SPACE) or Esc (the lat ter if you have a PS/2 type key board) . These will
make the com puter stop run ning the pro gram with a re port D BREAK - CONT re peats. On
other lay ers, the scroll? mes sage is re placed by a block cur sor (called the scroll prompt
cur sor) at the lower right cor ner. The only keys which will stop the scroll ing in lay ers other
than 0 are the Esc key if on a PS/2 key board or the BREAK key (CAPS SHIFT and
SPACE). Ev ery thing else will scroll the screen.

Expanding on INPUT

The INPUT state ment can do much more than we have told you so far. You have al ready
seen INPUT state ments like:

INPUT "How old are you?", age

in which the com puter prints the cap tion How old are you? at the bot tom of the screen,
and then you have to type in your age.

In fact, an INPUT state ment is made up of items and sep a ra tors in ex actly the same way
as a PRINT state ment is, so How old are you? and age are both INPUT items. INPUT
items are gen er ally the same as PRINT items, but there are some very im por tant dif fer -
ences:

First, an ob vi ous ex tra INPUT item is the vari able whose value you are to type in – age in
our ex am ple above. The rule is that if an INPUT item be gins with a let ter, it must be a vari -
able whose value is to be input.

Sec ond, this would seem to mean that you can't print out the val ues of vari ables as part of
a cap tion; how ever, you can get round this by putt ing pa ren the ses around the vari able.
Any ex pres sion that starts with a let ter must be en closed in pa ren the ses if it is to be printed
as part of a caption.

Any kind of PRINT item that is not af fected by these rules is also an INPUT item. Here is an
ex am ple to il lus trate what's go ing on:

LET myage = INT (RND * 100): INPUT ("I am
";myage; ". ");"How old are you?",
yourage

myage is con tained in pa ren the ses, so its value gets printed out. yourage is not con -
tained in pa ren the ses, so you have to type its value in.

If you are in Layer 0, ev ery thing that an INPUT state ment writes goes to the bot tom part of
the screen, which acts some what in de pend ently of the top half. In par tic u lar, its rows are
num bered rel a tive to the top line of the bot tom half, even if this has scrolled the ac tual
screen up (which it does if you type lots and lots of INPUT data).

To see how AT works in INPUT state ments, try run ning this on Layer 0:

ZX Spectrum Next – User Manual 125

Expanding on INPUT Chapter 15 – More about PRINT and INPUT

2 This functionality comes from the original ZX Spectrum single key (or tokenised) entry and it's retained for compatibility
reasons.

10 INPUT "This is line

1.",a$; AT 0,0;"This is

line 0.",a$; AT 2,0;

"This is line 2.",a$; AT

1,0; "This is still line

1.",a$

(Just press ENTER each time it stops.) When This is line 2. is printed, the lower part of the
screen moves up to make room for it; but the num ber ing moves up as well, so that the
rows of text keep their same num bers.

Now try this (again on Layer 0):

10 FOR n=0 TO 19: PRINT AT

n,0;n;: NEXT n

20 INPUT AT 0,0;a$; AT

1,0;a$; AT 2,0;a$; AT

3,0;a$; AT 4,0;a$; AT

5,0;a$;

As the lower part of the screen scrolls up and up, the up per part is un dis turbed un til the
lower part threat ens to write on the same line as the PRINT po si tion. Then the up per part
starts scroll ing up to avoid this.

The other lay ers work in the same man ner as de scribed for PRINT items, that is in both
rigid (cell ma trix) and flex i ble (pixel co or di nate) terms. To il lus trate the dif fer ence, is sue a
LAYER 1,1 di rect com mand and then mod ify the first ex am ple by first copy ing line 10 to
line 20 and then chang ing all AT state ments to POINT state ments switch ing the x and y
po si tions around, thus mak ing the lat ter two pa ram e ters 0,16 and 0,8 re spec tively to re -
flect the height of char ac ters (re mem ber that on lay ers other than 0 char ac ter ma tri ces will
change ac cord ing to char ac ter size and pixel po si tion ing ac cord ing to max res o lu tion).
The first thing you'll no tice is that INPUT takes place at the top left of the screen as would
with PRINT and the sec ond one that the first INPUT item is NOT printed at "line" 1 but rather
at "line" 0. Fi nally you can see from the mod i fied first ex am ple that INPUT ac cepts a POINT
mod i fier for po si tion ing ex actly like PRINT does.

LINE input

An other re fine ment to the INPUT state ment that we have n't seen yet is called LINE in put
and is a dif fer ent way of in put ting string vari ables. If you write LINE be fore the name of a
string vari able to be in put, as in:

INPUT LINE a$

then the com puter will not give you the string quotes that it nor mally does for a string vari -
able, al though it will pre tend to it self that they are there. So if you type in:

Steve

as the INPUT data, a$ will be given the value Steve. Be cause the string quotes do not ap -
pear on the string, you can not de lete them and type in a dif fer ent sort of string ex pres sion
for the INPUT data. Re mem ber that you can not use LINE for nu meric vari ables.

Using Expressions for INPUT

There's an in ter est ing ca pa bil ity of INPUT. While typ ing into an INPUT re quest that's ex -
pect ing a num ber vari able, you can use nu meric ex pres sions which can in clude pre vi -

126 ZX Spectrum Next – User Manual

Chapter 15 – More about PRINT and INPUT LINE input

ously de fined vari ables. Try run ning this program:

10 LET a=14

20 INPUT numbers

30 PRINT numbers

40 GO TO 20

In put a few num bers, and they'll be printed as ex pected on the screen. Now type a and if
you press ENTER, then 14 will ap pear! Try typ ing a+2 and 16 will ap pear. How ever, if you
type a vari able name not pre vi ously de fined then the com puter will stop with the re port 2
Vari able not found, 20:1.

Using control codes with PRINT

In the be gin ning of this chap ter, we saw the ef fect that con trol codes 29 and 30 had in ad -
just ing the size of the font that's cur rently printed on screen. There are more con trol codes
that we can use with PRINT. CHR$ 22 and CHR$ 23 af fect print ing in the same man ner as
AT and TAB. They are rather odd as con trol codes, be cause when ever one is sent to the
screen to be printed, it must be fol lowed by two more char ac ters that do not have their
usual ef fect: they are treated as num bers (their codes) to spec ify the y and x po si tions (for
AT) or the tab po si tion (for TAB). You will al most al ways find it eas ier to use AT and TAB in
the usual way rather than the con trol codes, but they might be use ful in some cir cum -
stances. The AT con trol char ac ter is CHR$ 22. The first char ac ter af ter it spec i fies the
y-po si tion (be it a line num ber or y-pixel value ac cord ing to the layer we're cur rently in) and
the second the column number, so that:

PRINT CHR$ 22+CHR$ 1 +CHR$ c;

has ex actly the same ef fect as:

PRINT AT 1,c;

This is so even if CHR$ 1 or CHR$ c would nor mally have a dif fer ent mean ing (for in stance
if c=13); the CHR$ 22 be fore them over rides that.

The TAB con trol char ac ter is CHR$ 23 and the two char ac ters af ter it are used to give a
num ber be tween 0 and 65535 spec i fy ing the num ber you would have in a TAB modifier:

PRINT CHR$ 23+CHR$ a+CHR$ b;

has the same ef fect as:

PRINT TAB a+256*b;

As with the char ac ter size con trol codes, there are fur ther con trol codes that only ap ply to
lay ers other than 0 and fur ther mod ify their be hav iour. One of those, is CHR$ 26 or the
Scroll-prompt in hib i tor con trol code. Set by CHR$ 26; CHR$ n; where n is the num ber of
lines that can be scrolled off be fore the scroll prompt cur sor ap pears (as dis cussed in the
Scroll ing sec tion above) but af ter the first full screen length has been printed. If n=0, the
scroll prompt func tion is in hib ited for that layer/win dow. Note that the n num ber of lines is
cal cu lated based on an 8 pixel char ac ter height. That can lead to some very con fus ing re -
sults if your cho sen char ac ter height is dif fer ent. Some are easy to cal cu late like the stan -
dard or dou ble height char ac ters, with the lat ter in es sence halv ing the amount of lines but
oth ers not so easy as with the re duced height and dou ble re duced height char ac ters. In
the two last cases you have to cal cu late how many pix els your pro gram out puts ver ti cally
by get ting the amount of ac tual lines times the height of the char ac ters and then di vide the
prod uct by 8 (stan dard char ac ter height) in or der to ar rive to how many lines you need to
in struct the sys tem via the Scroll-prompt inhibitor control code to allow.

ZX Spectrum Next – User Manual 127

Using control codes with PRINT Chapter 15 – More about PRINT and INPUT

If this sounds un nec es sar ily com pli cated that's be cause it is! In most cases, the av er age
user will ei ther need to dis able scroll-prompt ing by set ting n to 0 or just set it to a full
screen of data by set ting n to 24 (for all screen modes ex cept LAYER 1,0 which re quires n
set to 12).

On Layer 0 you can du pli cate that be hav iour al beit in a less con fus ing way since the char -
ac ters are al ways 8 pix els high, by em ploy ing a bit of POKE trick ery to in hibit the scroll?
prompt by doing:

POKE 23692,x

where x is the amount of lines the scroll prompt should be in hib ited for –or in other words,
ev ery time the scroll coun ter has been reached. Af ter this it will scroll up x num ber of times
be fore stop ping again with scroll?. As an ex am ple, try:

10 POKE 23692, 255

20 FOR n=1 TO 400

30 PRINT "line ";n

40 NEXT n

and watch ev ery thing whizz off the screen up un til line 277 be fore the prompt to scroll re -
ap pears! The tech ni cal ex pla na tion of what this POKE does, is that it mod i fies the Sys tem
Vari able SCR CT. It's im por tant to also note that the Ed i tor re sets this Sys tem Vari able so
en ter ing the POKE di rectly will have no ap pre cia ble ef fect on scroll ing on Layer 0 un til it's
en tered in a pro gram. We will ex am ine all the pos si ble com bi na tions of PRINT con trol
codes on Chap ter 21. You will find more in for ma tion about Sys tem Vari ables in Chap ter 25
and for POKE in Chap ter 24 – The Memory.

INKEY$

There's an ad di tional func tion re lated to key board en try called INKEY$. INKEY$ (which
takes no ar gu ment) reads the key board im me di ately when it's in voked. If you are press ing
ex actly one key (or a SHIFT key and just one other key) then the re sult is the char ac ter that
that key gives in that typ ing mode; oth er wise the re sult is the empty string.
Try this pro gram, which works like a typewriter.

10 IF INKEY$ <>"" THEN GO TO

10

20 IF INKEY$ = "" THEN GO TO

20

30 PRINT INKEY$;

40 GO TO 10

Here line 10 waits for you to lift your fin ger off the key board and line 20 waits for you to
press a new key.

Un like INPUT, INKEY$ does n’t wait for you. So you don’t type ENTER, but on the other
hand if you don’t type any thing at all then you’ve missed your chance. This also ex plains
why the GO TO state ments are needed in lines 10 and 20.

128 ZX Spectrum Next – User Manual

Chapter 15 – More about PRINT and INPUT INKEY$

Colours

This page intentionally left blank

Colours

An introduction to colour on the ZX Spectrum Next

Up un til this point, we have n't re ally touched the sub ject of graphics ma nip u la tion on the
ZX Spec trum Next and that's be cause the sub ject –mainly due to its orig i nal mod els' his -
tory– can be rather daunt ing to a be gin ner. As we've seen in Chap ters 1 and 15 where we
re ally started to get into the more in tri cate de tails of the graphics sys tem, the ZX Spec trum
Next has some very in ter est ing graphics ca pa bil i ties that set it apart from its pre de ces -
sors. The first ca pa bil ity which we will examine in depth is colour.

Basics of computer colour

The first thing we need to re mem ber, and that is im por tant as it ex plains many of the de -
sign choices of the ZX Spec trum Next, is that at its heart beats an 8-bit1 pro ces sor. This
means that it is at its best when ma nip u lat ing in te ger num bers up to 255 which are rep re -
sented as 2 to the power of 8 –or prop erly writ ten: 28. Now tak ing a step back from that in -
for ma tion we should con cen trate on how col our can be rep re sented. In re al ity there are
many meth ods but the most com mon for a com puter – and the one used by the ZX Spec -
trum Next – is to break col our into three com po nents: Red, Green and Blue (or RGB) and
to rep re sent in ten si ties of each of these com po nents as num bers from 0 (for no in ten sity,
or dark) to what ever max i mum value a com puter can store eas ily. In the ZX Spec trum
Next's case each col our com po nent can have 8 in ten si ties mak ing a to tal of 512 com bined
intensities which translates to 512 colours in total.

Now from ba sic maths, we know that to rep re sent the num ber 8 in bi nary form (which is
what com put ers un der stand) we can re write it as 23 – or a bi nary num ber of 3 bits of length.
To rep re sent the to tal com bi na tion of colours when we com bine the col our com po nents,
we can re write 512 as (23)3 which in turn can be re writ ten as 29. This, given what we just
said about the 8-bit na ture of the ZX Spec trum Next is pre sent ing a prob lem as the num -
ber of colours we have is rep re sented by a 9-bit num ber while the com puter can best ma -
nip u late ef fi ciently 8 bits at a time. Keep this in mind for the mo ment and lets dis cuss how
a col our could be represented in binary form.

Colour organisation and representation

RGB col our has many ways of be ing stored in mem ory and it's usu ally de noted by the or -
der of the bits. For ex am ple the BGR way stores first the bits for the Blue com po nent, then
the bits for the Green com po nent and fi nally the bits for the Red com po nent. As a mat ter of
course, we usu ally add a num ber af ter ev ery com po nent (des ig nated by a let ter) to de note
the num ber of bits (ergo also the num ber of in ten si ties) or a sin gle num ber at the end of
the or gani sa tional ac ro nym to de note that all com po nents have equal num ber of in ten si -
ties. For ex am ple R2G3B3 would mean an 8-bit col our or gan ised as RGB with 2 bits (4 lev -
els of in ten sity) on the Red com po nent and 3 bits (8 lev els of intensity) on the Green and
Blue components.

The ZX Spec trum Next uses the GRB (for com pat i bil ity modes) and RGB meth ods of or -
gani sa tion and can store col our in three ways: G1R1B1, G3R3B2, R3G3B3 (or RGB3) and
R3G3B2. The lat ter is re ally a short cut for an 8-bit sub set of the RGB3 way as we will see
later but for now, let's as sume it can ma nip u late 3-bit, 8-bit and 9-bit colours.

Spatial vs Colour Resolution

Thus far, you've seen ref er ences about res o lu tion when it co mes to graphics but what
does the word re ally mean? In short it means how much graph i cal in for ma tion we can fit in
a fi nite space. This does n't ac tu ally mean how many dots we can fit in our screen (to make

ZX Spectrum Next – User Manual 131

An introduction to colour on the ZX Spectrum Next Chapter 16 – Colours

1 Bit is an acronym for BInary digiT and is a term used to describe the tiniest amount of information that a computer can
hold, which is a single binary digit. Microprocessors are classified according to their ability to manipulate binary
numbers of a certain order in one go. For example the Z80N CPU which is inside the ZX Spectrum Next can
manipulate a number consisting of an 8 bit order in one go, so it is called an 8-bit microprocessor. By contrast the
CPU inside the ZX Spectrum Next's "big brother", the Sinclair QL is a 32bit microprocessor as it can manipulate
numbers consisting of 32-bits in one go.

a gross sim pli fi ca tion) but both how many dots and how many colours we can fit. The for -
mer is spa tial res o lu tion (it has one more com po nent; den sity but this is not per ti nent to this
dis cus sion) and the lat ter, col our res o lu tion. It's im por tant to make the dis tinc tion as we will
see be low be cause this informs not only a com puter's de sign choices when it co mes to
graphics but also the spe cial trick ery that may be involved to display both on screen.

It's easy to un der stand spa tial res o lu tion. We –as you al ready read here and prob a bly else -
where– mea sure spa tial res o lu tion in pix els –or PIC Ture EL e ments–, in es sence dots ar -
ranged in a Car te sian, two-di men sional co or di nate sys tem. Leav ing col our in for ma tion
aside for the mo ment we can as sign one bit per pixel and we can pro ject this in the com -
puter's mem ory in a lin ear fash ion: Each hor i zon tal line, fol lows the other so in the end we
have a se ries of bits with each line be ing w x n times away from the very first bit that started
our pic ture where w is our hor i zon tal res o lu tion and n is the line we're on. We need w x h bits
to rep re sent our screen spa tially, where w is as be fore the hor i zon tal size and h is the ver ti -
cal size (both of them mea sured in pix els).

This is very straight for ward and in deed the ZX Spec trum Next uses this way to store
graphic data on Lay ers 2 and Layer 1,0. How ever in all the older modes, it uses a vari a tion
of lin ear stor age called in ter leaved stor age. The screen area is sep a rated ver ti cally into
three 64 pixel high strips (or 8 at trib ute cells) ar ranged in blocks of 32. Each com plete line
(x) is stored lin early; in other words a pixel stored in hor i zon tal co or di nate 9 fol lows the
pixel stored in hor i zon tal co or di nate 8 how ever, when it co mes to the ver ti cal or der, there is
a vir tual hop scotch of sorts hap pen ing: The com puter stores the first line of the first block
of at trib ute cells, then stores the first line of the sec ond block un til it reaches the first line of
the 8th block, then re turns to the sec ond line of the first block and the or der con tin ues with
all sec ond lines, then thirds and so on, un til each third of the screen is full. Fig.19 dem on -
strates the or der of stor age for ZX Spec trum Next leg acy modes in or der to visu al ise it a lit -
tle better. We will get into more de tail on why the graphic data is stored in that way later.

It's per haps eas ier to un der stand the way things are stored by ex e cut ing the fol low ing pro -
gram:

10 LAYER 1,2

132 ZX Spectrum Next – User Manual

Chapter 16 – Colours Spatial vs Colour Resolution

Fig. 19 – Interleaved graphic data storage for ZX Spectrum Next standard resolution Legacy modes

20 BANK 5 ERASE 0,6144,0

30 FOR %m=0 TO 6143

40 BANK 5 POKE %m,%@10101010

50 NEXT %m

This pro gram will cre ate ver ti cal lines 1 pixel apart on your screen but will do so in the or der
they are stored in mem ory. As we saw pre vi ously POKE (and BANK x POKE ad dress,
value) writes a byte in mem ory at a spe cific ad dress. The ad dresses we see start ing with
line 30 is where the screen mem ory is lo cated and writ ing any thing there will pro duce an
im age on your screen. The spe cific ad dress 0 in BANK 5, marks a lo ca tion called
DISPLAY_FILE (or –al ter na tively– DISP_FILE1 but you'll see be low why). It's im por tant to
note here that DISPLAY_FILE when deal ing with leg acy modes is al ways lo cated at the
same ad dress: Byte 0 (dec i mal) or 0x0000 (hex a dec i mal) in BANK 5 (See Chap ter 24 –
The Mem ory for more de tails on the BANK command and its parameters).

Layer 3 dif fers even more on how it stores data in mem ory. If you re call from Chap ter 14,
Layer 3 is a Char ac ter Graphics mode and that name de scribes rather de scrip tively how
it's ar ranged, in other words, very much like the screen is for reg u lar PRINT com mands as
we saw in Chap ter 15. The screen area is bro ken down to rows and col umns and each of
these lo ca tions, as marked by the unique row by col umn co or di nate, points to a lin early
stored 8 x 8 pixel im age in mem ory called a tile. You can have up to 512 in di vid ual tiles in
mem ory but you an also have as lit tle as 1! Also the or der of the tiles in mem ory is not im -
por tant as each lo ca tion can point to any tile from the ones avail able. In es sence you can
have an en tire im age com posed of the same tile re peated over and over again much like
you can fill a screen with "A" if you re peat a PRINT "A"; enough times. Layer 3 there fore is
an ar ray of point ers to the tile lo ca tions in mem ory. One would ask, why is this com pli cated
mech a nism nec es sary? The an swer is quite sim ple and you will see it re peated fur ther
down: By us ing point ers (in ef fect in di ces), we can trans late much larger mem ory struc -
tures and re quire ments into sim pler ones, ones that an 8-bit com puter like the ZX Spec -
trum Next can ma nip u late eas ily. We will ex am ine Layer 3's mem ory or gani sa tion and
us age sep a rately and more in depth, at the end of this chapter and in the following two.

For all lay ers ex cept Layer 3 and the Sprites Layer, the ZX Spec trum Next has a max i mum
hor i zon tal res o lu tion of 512 pix els2 and a ver ti cal res o lu tion of 192 pix els which gives us:
512 x 192 = 98304 pix els – or bits – in to tal or 12288 bytes. In or der to store that, the ZX
Spec trum Next de fines a sec ond DISPLAY_FILE area called DISP_FILE2 which is lo cated
at byte 8192 (dec i mal) or 2000h (hex a dec i mal) in BANK 5. This sec ond ary area has the
same or gani sa tion as the first DISPLAY_FILE but when in use it holds the dis play of all
odd-num bered hor i zon tal res o lu tion ad dresses letting DISP_FILE1 handle the even ones.

To dem on strate this vi su ally you will need to edit the pro gram above as fol lows:

10 LAYER 1,2

20 BANK 5 ERASE 0,6144,0

30 BANK 5 ERASE 8192,6144,0

40 FOR %m=0 TO 6143

50 BANK 5 POKE %m,%@10001000

60 NEXT %m

70 FOR %x=8192 TO 8192+6143

80 BANK 5 POKE %x,%@00100010

90 NEXT %x

100 LAYER 0

then ex e cute the pro gram. The two LAYER state ments first en able HiRes mode and then
dis able it. The two BANK 5 ERASE state ments make sure there are no left over data in the
DISP_FILE ar eas by fill ing them with 0s. You will see first the DISP_FILE1 area fill ing up

ZX Spectrum Next – User Manual 133

Spatial vs Colour Resolution Chapter 16 – Colours

2 The max horizontal resolution of 512 pixels is achieved by using half-width pixels which occupy the same area as the
normal horizontal 256 full-width pixels.

and once the en tire height of the screen is ran through, the DISP_FILE2 area do ing the
same. If you want to see this in a more dra matic way, con vert line 10 to read LAYER 1,1
and then in sert a line:

65 LAYER 1,2

This will il lus trate even more viv idly how the dis play is changed to han dle odd and even
hor i zon tal co or di nates from dif fer ent ar eas of the memory.

So far, we learned that bits can have two states; 0 and 1; we are ready there fore to make
the log i cal jump and as sign two col our states for the im age we just cre ated. With 0 be ing
black and 1 be ing white, we just de fined a mono chrome pic ture. But what about more
colours?

We saw that we can dis play at least two colours on screen us ing a sin gle bit. To dis play
more (and store this in for ma tion some where) we need to store more bits of in for ma tion,
with this in for ma tion deal ing ex clu sively with col our. In the be gin ning of this chap ter we
dis cussed how the ZX Spec trum Next gen er ates and stores col our in 9 bits. The im me di -
ately ob vi ous way to do that, would be to ex pand on the model dis played on Fig. 18 by
add ing bits in the or der the ZX Spec trum Next stores them and have a lin ear map of 9 bits
per pixel. This is a good idea but un for tu nately in cor rect, and the rea son for that goes back
to our ini tial dis cus sion of the ZX Spec trum Next be ing an 8-bit com puter mak ing ac cess -
ing 9 bits of in for ma tion at a time, ex tremely slow and there fore im prac ti cal in terms of
design, both from software and hardware standpoints.

In stead the ZX Spec trum Next uses three sys tems of stor ing and dis play ing col our in for -
ma tion ad di tion ally to the HiRes mode (Layer 1,2) which we just dem on strated as the lat ter
is mono chrome so no ad di tional col our in for ma tion is needed. These are:

1. Col our at trib ute dis play

2. Ex tended col our at trib ute dis play

3. Pal ette-based hy brid lin ear bitmapped col our dis play

Colour attribute display

This sys tem dates from the early ZX Spec trum mod els and was mainly con ceived to both
dis play col our and save on mem ory which at the time came at a pre mium. The graphic
dis play is sep a rated in 2 ar eas. The first which we al ready showed in the pre vi ous sec tion
(DISPLAY_FILE) only holds the ac tual 1-bit graphic data. Size-wise and for the stan dard
res o lu tion of Layer 0 and Layer 1,1, this works out to: 256 x 192 = 49152 pix els – or – bits
which di vided by 8 gives us 6144 bytes which in turn di vided by 1024 gives the 6 Kbytes
fig ure). The sec ond area, to which we shall in tro duce you now, is a smaller-sized mem ory
block, known as COLOUR_FILE (or, al ter na tively, COL_FILE1) which re sides im me di ately
af ter DISPLAY_FILE in mem ory. It is 768 bytes long, and breaks down the col our in for ma -
tion in blocks of 8 by 8 pix els (there fore di vid ing the screen in 32 x 24 blocks) or at trib ute
cells where ev ery cell can have two pos si ble colours out of a to tal of 8 si mul ta neously. This
col our in for ma tion is stored in two con sec u tive GRB blocks of three bits each, preambled
by two ad di tional bits that can make the colours flash ing and/or brighter. Fig. 20, shows
how col our in for ma tion is stored in each byte in the COLOUR_FILE area.

The two colours stored within are named INK and PAPER mainly to ref er ence the printed
char ac ters we ex plored in the pre vi ous chap ter since INK is the col our of the char ac ter it -

134 ZX Spectrum Next – User Manual

Chapter 16 – Colours Colour attribute display

Fig. 20 - Attribute byte organisation

self and PAPER is the rest of the back ground, in a sense a form of vir tual pa per we write
on3. That way Layer 0 graphics can dis play up to 16 colours on screen us ing very lit tle
mem ory but with the trade off of col our clash. This term sim ply de scribes the fact that the
col our res o lu tion is much lower than the spa tial one.

Like its DISPLAY_FILE coun ter part, COLOUR_FILE can have a sec ond ary area which,
when en abled, is called COL_FILE2 and re sides right af ter DISP_FILE2.

Un like the DISPLAY_FILE ar eas, COLOUR_FILE ar eas are nor mally straight for ward in how
they are stored and that is sim ply in or der of cells from top leftmost to right bot tom most.

The sec ond ary DISPLAY_FILE area, other than the HiRes (Layer 1,2) area for even dis play
ad dresses can also func tion as a shadow screen which is a non-vis i ble screen, iden ti cal in
or gani sa tion to the first one, that holds a vi sual we may want to pro ject quickly thus cre at -
ing an i ma tion ef fects as we'll see in Chap ter 18 – Mo tion later on. In that us age the sec ond -
ary COLOUR_FILE area func tions ex actly the same way as the pri mary one. In HiColour
mode how ever (Layer 1,3), DISP_FILE2 be comes it self a COLOUR_FILE and the nor mal
COL_FILE1 and COL_FILE2 are not used. It's also note wor thy, that HiRes mode also does
not use the COLOUR_FILE areas but for a different reason

HiColour mode (Layer 1,3) re duces the amount of col our clash by re duc ing the size of at -
trib ute cells thereby ex tend ing the col our res o lu tion to 32x192 cells of 8x1 pix els in size.

As the col our res o lu tion in creases, the mem ory re quire ments are in creased as well and
that is why the en tire mem ory of DISPLAY_FILE2 is used in lieu of a COLOUR_FILE. It's
easy to fig ure out why this hap pens: The orig i nal COLOUR_FILE area of 768 bytes is ex -
tended (there fore mul ti plied) by 8 times to make the ver ti cal col our res o lu tion equal to the
spa tial res o lu tion. If you make the mul ti pli ca tion 768 x 8 you see that a fur ther 6.144 bytes
are needed to in crease the col our res o lu tion. COLOUR_FILE1 and COLOUR_FILE2 ar eas
are un used in this mode. The or gani sa tion how ever of this en larged COLOUR_FILE since
the col our res o lu tion has grown fol lows the one of the DISPLAY_FILE mean ing that it uses
the same interleaved storage as the graphic data.

We can there fore mod ify our orig i nal pro gram to also dis play col our at trib utes so we can
get a vi sual idea of the two modes' dif fer ences:

10 LAYER 1,1

20 BANK 5 ERASE 0,6912,4

30 BANK 5 ERASE 8192,6912,4

40 FOR %m=0 TO 6143

50 BANK 5 POKE %m,%@10101010

60 NEXT %m

70 FOR %a=6144 TO 6144+767

80 BANK 5 POKE

%a,INT((RND*1)+0.2)*128 +

INT(RND*128)

90 NEXT %a

100 LAYER 1,3

110 FOR %x=8192 TO 8192+6143

120 BANK 5 POKE

%x,INT((RND*1)+0.2)*128

+ INT(RND*128)

130 NEXT %x

140 LAYER 1,1

150 PAUSE 0

ZX Spectrum Next – User Manual 135

Colour attribute display Chapter 16 – Colours

3 This distinction is purely arbitrary but it helps distinguish these two colours from one another in a more
human–readable way. They could have been easily called COLOUR_A and COLOUR_B.

Lines 20 and 30 clear the DISP_FILE1 and DISP_FILE2 mem ory, Lines 70 to 90 fill the
COL_FILE1 area with ran dom col our in for ma tion. The LAYER 1,3 com mand in Line 100
switches to HiColour mode and sub se quently ran dom col our in for ma tion is writ ten in each
at trib ute cell with lines 110 to 130. As you can see, at trib ute cells in HiColour mode are
much smaller in size and writ ten in an in ter leaved man ner as op posed to the lin ear man ner
dem on strated by lines 70 to 90. Fi nally line 140 switches back to Layer 1,1. To in crease the
va ri ety of col our com bi na tions and re duce the times of flash ing be ing in tro duced the
FLASH bit is randomised independently.

Extended colour attribute display

The cre ation of the ZX Spec trum Next brought forth Layer 2 and its ex tended colours.
How ever the need for colourisation of older soft ware arose. What could be done to give a
part of the new fea tures to older soft ware with out break ing com pat i bil ity or hav ing to re -
write from scratch? There have been many so lu tions of fered since the in cep tion of the
orig i nal ZX Spec trum, each with its own strengths and draw backs but all had been dif fi -
cult, and most non-ac ces si ble in a straight for ward man ner from BASIC. A so lu tion in the
form of an En hanced ULA was con ceived there fore that would give ac cess to the en tirety
of the ZX Spec trum Next's col our ca pa bil ity with out sacrificing compatibility or ease of use.

This is achieved by re tain ing the DISPLAY_FILE and COLOUR_FILE mem ory ar eas but re -
ar rang ing COLOUR_FILE byte or gani sa tion by repurposing the FLASH and BRIGHT bits
and in creas ing the amount of INK and PAPER bits which be come point ers to pal ette
colours (see the fol low ing sec tions for more in for ma tion on pal ettes). This way, sim ple
com mands al low recolouring of older soft ware which is not aware of the ZX Spec trum
Next's col our 'abil i ties' with out sac ri fic ing com pat i bil ity. Col our clash re mains (as do the at -
trib ute cell sizes) how ever the col our ca pa bil i ties ex tend to a max i mum of 256 colours out
of the 512 the ZX Spec trum Next can dis play. To dem on strate (with out get ting into too
much de tail) how you can use more colours us ing the Ex tended col our at trib utes dis play of
the En hanced ULA type the following program:

10 BANK NEW ba

20 FOR %a=0 TO 255

30 BANK ba POKE %a,%a

40 NEXT %a

50 LAYER 1,1

60 PALETTE DIM 8

70 LAYER PALETTE 0 BANK ba, 0

80 PALETTE FORMAT 255

90 BANK 5 ERASE 0,6912,255

100 LET %l=6144

110 REPEAT: WHILE %l<6912

120 IF %c>255 THEN LET %c=0

130 BANK 5 POKE %l,%c

140 LET %l=%l+1

150 LET %c=%c+1

160 REPEAT UNTIL 0

170 PAUSE 0

Don't worry about the un known com mands yet. What the pro gram does is to cre ate an
8-bit pal ette for Layer 1,1, then en able the En hanced ULA and switch it to Full Ink Mode
then cy cle through all 256 colours of that pal ette by writ ing in the COLOUR_FILE area the
spe cific at trib ute. We'll go into more de tail on how that works when we ex am ine IN and
OUT and the ZX Spec trum Next Ports Sys tem in Chap ter 23.

136 ZX Spectrum Next – User Manual

Chapter 16 – Colours Extended colour attribute display

Palette-based hybrid linear bitmapped colour display

This sys tem of col our or gani sa tion, stor age and dis play is ap pli ca ble to Layer 1,0, Layer 2,
Layer 3 and partly ap pli ca ble to the Sprite Sys tem. Be fore we ex plain why it's hy brid, we'll
point you back to the be gin ning of this chap ter and es pe cially the Col our or gani sa tion and
rep re sen ta tion sec tion. As you re call, we said there that the ZX Spec trum Next can han dle
both 9 bit and 8 bit col our. This is tech ni cally in ac cu rate as we have a broader spec trum of
colours that a single byte can display.

We'll take a small de tour here and ex plain the con cept of a pal ette. A pal ette is a sub set of
colours where each col our dis played on screen, is not ac tu ally stored as the col our com -
po nent in for ma tion it's made up of, but rather as a pointer (or in dex) of the ac tual col our
that's stored some where else. This sub set in the ZX Spec trum Next's case is com prised of
ei ther 256 point ers (there fore we re quire only an 8 bit num ber to store each pointer) or 16
point ers plus one off set (there fore we re quire only a 4 bit num ber to store each pointer with
an ad di tional 4 bit num ber to point us to one of 16 groups of colours) to the ac tual colours
which are rep re sented by 16 bit num bers (there fore a set of two 8 bit con sec u tive num bers
which have 6 bits4 un used, give the 9 bits of the ac tual colour stored, albeit rather
inefficiently).

There are 8 pal ettes in the ZX Spec trum Next. Two for each graphics sys tem:

• Layers 0 and 1 use two

• Layer 2 uses two more

• Layer 3 also uses two –and–

• The Sprite System uses the last two

With two pal ettes, all 512 pos si ble colours of the ZX Spec trum Next can be re called, re ar -
ranged and stored and there fore as signed to pix els, char ac ter tiles or at trib ute cells ac -
cord ing to the layer in use, on screen. That does n't mean all can be dis played
si mul ta neously with out some clever NextBASIC tricks. Nor mally only 256 can be shown
on a par tic u lar layer at one time.

The ZX Spec trum Next pal ette sys tem has a spe cial mode where if one were to use an
8-bit col our in the R3G3B2 for mat and as sign one pal ette in se quence to the value that
equals the pointer value (for ex am ple set pal ette lo ca tion 15 to be of a value 15) then we
could treat the en tire dis play of Lay ers 2 and Layer 1,0 (LoRes) as 8-bit, treat ing from then
on the dis play in stead of a pal ette-based one, as a bitmapped one. This is ex actly why we
can call it hybrid.

In re al ity, each R3G3B2 col our is trans lated in ter nally by the ZX Spec trum Next into a full
RGB3 col our by per form ing a bi nary OR of the first bit (MSB) of the blue com po nent with 0
so for ex am ple col our 10111110 (8-bit) will be come in ter nally 101111101 as a full 9-bit
colour.

LoRes (Layer 1,0) and Layer 2 are very straight for ward in how they store both col our as well
as graphic data. Un like the other modes, there's no sep a rate area for col our and there is
no in ter leav ing in the or der of stor age or sep a rate point ers to the area the data is stored.
Each byte of mem ory rep re sents one pixel on screen from the top left to the bot tom right.
The only two dif fer ences be tween them are the mem ory lo ca tion where the screen con -
tents are stored and their res o lu tion. The for mer uses the stan dard DISP_FILE1 and
DISP_FILE2 ar eas (each hold ing one half of the screen) and is usu ally stored in BANK 5,
hav ing a max i mum res o lu tion of 128 w x 96 h pix els (thus mak ing it a to tal of 12 Kbytes in
size) while the lat ter takes up 3 banks (by de fault BANKS 9,10 and 11 but is relocatable5),
hav ing a max i mum res o lu tion of 256 w x 192 h pix els (mak ing it a to tal of 48 Kbytes in size).

ZX Spectrum Next – User Manual 137

Palette-based hybrid linear bitmapped colour display Chapter 16 – Colours

4 Obviously 16 positions minus 9 positions should equal 7 unused positions, however there's one more bit used called
the 'priority bit' which although unused in the case of other layers, is used in Layer 2 palettes as we'll see in the next
section.

5 By relocatable, we mean that although the ZX Spectrum Next initially reserves BANKS 9 through 12 for Layer 2 graphic
data, this can change either automatically or by the user. One should not assume the aforementioned banks of
memory always hold Layer 2 graphic data. Check Chapters 23 and 24 for more information regarding the actual Layer
2 location.

As a con se quence of graphic and col our data be ing stored to gether LoRes and Layer 2
modes do not suf fer from col our clash. An ad di tional side-ef fect of the lin ear na ture of
these modes, is that the con cepts of FLASH and BRIGHT do not ex ist there. BRIGHT was
just a way to squeeze more colours out of a very lim ited se lec tion and FLASH can be re -
pro duced by quickly in vert ing the con tents of an area us ing a num ber of pro gram ming
tech niques avail able via NextBASIC.

Layer 3 colour storage

Layer 3 is spe cial as it al lows for com plete us age of the full Spec trum Next screen area,
there fore the en tirety of the 320 w x 256 h pix els res o lu tion is avail able (com bin ing the
stan dard graphic area with the width and height of the bor der) and uses ei ther (like the
Sprite sys tem we will ex am ine in Chap ter 18) a pal ette off set + 4-bit in dex com bi na tion to
store col our for each tile or a mono chrome mode spe cif i cally suited to dis play text. The
first method, achieves sig nif i cant mem ory space sav ings with out sac ri fic ing col our ca pa -
bil i ties (al though at first it may look a bit re stric tive): Each tile be ing 8 x 8 has 64 pos si ble
pixel lo ca tions; by us ing a 4-bit col our in dex num ber we can only have 24 = 16 com bi na -
tions/colours in stead of 64 we the o ret i cally could have. With a bit of prior ar range ment of
our im age data how ever, we can achieve spec tac u lar re sults and dis play very com plex
im ages (col our-wise) even with that re stric tion in place. The mono chrome mode has ob vi -
ous mem ory ben e fits we have explored with the HiRes mode (Layer 1,2) as well as
increased speed.

Layer 2 priority colours

As we will see in length on the fol low ing sec tion, since the ZX Spec trum Next dis play is lay -
ered, there is a way to re ar range the layer dis play pri or ity, or rather the or der in which these
lay ers are stacked one on top of an other. This pro vides unique flex i bil ity how ever there are
cases that you'd want to mesh the lay ers in a more com plex way as for ex am ple in the
case of a game where you would want the player's sprite to weave in-and-out the en vi ron -
ment in or der to get the im pres sion of depth. Usu ally this is achieved by em ploy ing an al -
go rithm that per forms en vi ron men tal mask ing; hid ing in other words things that we don't
want to dis play on the top layer. This pro cess, es pe cially where it in volves mov ing
graphics, is very pro ces sor-in ten sive and can slow down the com puter, re sult ing in a
not-so-fluid ex pe ri ence of move ment. The ZX Spec trum Next ad dresses this very spe cific
is sue with the in tro duc tion of pri or ity colours. These ap ply only to Layer 2 pal ettes and are
de fined by set ting the 8th bit of the sec ond ary byte of each pal ette en try to 1. Set ting any
pal ette en try's pri or ity bit will en sure that this col our will al ways print on top of ev ery thing
else. In case you would need the same col our to ex ist in a layer be low the top most you will
need to de fine the same col our again but on a dif fer ent in dex us ing the LAYER PALETTE
com mand. We will revisit this topic further below, when we reach the palette manipulation
commands.

More on the LAYER command

In Chap ter 15 as well as in the pre vi ous sec tions of this chap ter we saw re peated men tions
and us age of the LAYER com mand. By now, you should have enough grasp of the me -
chan ics be hind the ZX Spec trum Next's col our and graphic sys tem to ex am ine it in a lit tle
more de tail. We will fur ther ex pand on its us age ev ery time a func tion al ity we have n't yet
dis cussed is in tro duced (as in the PALETTE sec tion that fol lows shortly) but for now let's
head back to the be gin ning of Chap ter 15 and re-it er ate the pos si ble graphic modes in
con junc tion with LAYER which is used to change between them.

First of all and given what we've learned in terms of col our, it's help ful to con cep tual ise the
graphic sys tem in a slightly dif fer ent man ner than what the LAYER com mand or gan ises
them in. These lay ers are grouped to gether in terms of func tion al ity and mem ory ad -
dresses they use, namely: The ULA modes (Layer 0 and all Layer 1 modes), Layer 2 and the
Sprite Sys tem (which we will ex am ine in more de tail in Chap ter 18 – Time and Mo tion). This
can get a bit con fus ing as LoRes (Layer 1,0) and Layer 2 use the same col our stor age and
dis play sys tem so it's better to com pletely dis re gard this and in stead imag ine four dif fer ent

138 ZX Spectrum Next – User Manual

Chapter 16 – Colours Layer 3 colour storage

screens lay ing on top of one an other with pro gram ma ble pri or i ties and po ten tial trans par -
ency. In sim ple words that means that you can se lect which ever screen you want to ap -
pear on top and in which or der. This means putt ing a pri or ity onto the mem ory space that
holds the data for the graphics and dis play ing this above everything else. This is achieved
with the

LAYER OVER or der

com mand, where or der is one of the fol low ing:
0 Sprites over Layer 2 over ULA (Layer 1) – the de fault

1 Layer 2 over Sprites over ULA (Layer 1)

2 Sprites over ULA (Layer 1) over Layer 2

3 Layer 2 over ULA (Layer 1) over Sprites

4 ULA (Layer 1) over Sprites over Layer 2

5 ULA (Layer 1) over Layer 2 over Sprites

6 Sprites over (Layer 2 + ULA com bined) – colours clamped to 7

7 Sprites over (Layer 2 + ULA com bined) – colours clamped to (0,7)

The last two or di nals en able one of the two col our blend ing modes al low ing for some very
in ter est ing light ing/shad ing effects.

This (as we will see in Chap ter 23 – IN, OUT and the Next Reg is ters) di rectly af fects the
Sprite and Layer Sys tem Reg is ter (Reg is ter 21) and in the same or der as the LAYER OVER
command.

Fig. 21 be low visu al ises the way lay ers com pound, to form the ZX Spec trum Next dis play.

You will no tice a few odd things about the di a gram above. First, it is out of or der with the
sprites ap pear ing be low Lay ers 0 – 2. That brings us to the sec ond thing (don't worry the
dots will be con nected shortly) which is that the Sprite Layer as well as Layer 3 have a
higher us able res o lu tion than Lay ers 0 through 2. The or der was changed to group the like
res o lu tions ranges to gether and better visu al ise that Layer 3 as well as the Sprite Sys tem

ZX Spectrum Next – User Manual 139

More on the LAYER command Chapter 16 – Colours

LAYER OVER, like the regular LAYER command, does not currently cover Layer 3.
Instead, access to Layer 3 facilities and/or priorities has to be performed by using the IN
and OUT commands covered in Chapter 23.

Fig. 21 – Display Layers
(Graphics courtesy of Lampros Potamianos from: The Hollow Earth Hypothesis)

have a max i mum of 320 pixel hor i zon tal by 256 pix els ver ti cal res o lu tion as op posed to the
256 pixel by 192 pixel stan dard pixel size res o lu tion of the other lay ers. As for the or der as
seen in the LAYER OVER com mand, it re ally does n't mat ter, as it can be re ar ranged in the
way we see fit. In the spe cific ex am ple above we can see how one can mix-and-match
sev eral Lay ers to con struct a more com plex fi nal vi sual; Layer 3 is used for the back -
ground, the ex tended sprite area for rel a tively static in for ma tion about the game (Lives
and score), LoRes (Layer 1,0) for ba sic par al lax an i ma tion (clouds) and Layer 2 for the
remaining more complex and colourful graphics.

It's also note wor thy, that al though we spoke about mem ory or gani sa tion in re gards to col -
our for all lay ers, we did not do so for the Sprite Sys tem. That is be cause sprites do not oc -
cupy nor mal mem ory but in stead, use their own ded i cated mem ory that's lo cated within
the Next Sprite En gine hard ware. The LAYER com mand other than to set pri or i ties of dis -
play does not af fect, nor ad dresses the Sprite En gine di rectly there fore in the fol low ing
com mands, the lat ter is not referenced anywhere.

There are more LAYER com pound com mands that are more per ti nent to graphics rather
than col our and oth ers that deal with mo tion in some fash ion or other. We will re visit there -
fore LAYER in more de tail in the fol low ing sec tions and chap ters. The main func tion al ity of
the LAYER com mand which is none other than chang ing graphic modes.

LAYER num ber, pa ram e ter

will change the layer to the one spec i fied by num ber with an op tional pa ram e ter ac cord ing
to the list below:

LAYER 0 Se lect leg acy ZX Spec trum Mode
LAYER 1,0 Se lect Layer 1, LoRes mode
LAYER 1,1 Se lect Layer 1, stan dard res o lu tion mode
LAYER 1,2 Se lect Layer 1, HiRes mode6

LAYER 1,3 Se lect Layer 1, HiColour mode
LAYER 2 Se lect Layer 2 mode
LAYER 2,0 Se lect Layer 2 mode and dis able its dis play
LAYER 2,1 Se lect Layer 2 mode and en able its display

At tempt ing to en ter a layer num ber or pa ram e ter that's not sup ported ac cord ing to this list,
will re sult to a B In te ger out of range error.

There's one more com mand of note and this is:

LAYER CLEAR

which will re set all layer in for ma tion, in clud ing banks, mode, the Layer 2 dis play en able,
layer off sets (see Chap ter 17) and or der ing to de faults. This is also done by NEW.

BORDER, PAPER, INK, BRIGHT and FLASH

Run this pro gram:

5 LAYER 0

10 FOR m=0 TO 1: BRIGHT m

20 FOR n=1 TO 10

30 FOR c=0 TO 7

40 PAPER c: PRINT " ";: REM 4

spaces

50 NEXT c: NEXT n: NEXT m

60 FOR m=0 TO 1: BRIGHT m: PAPER 7

70 FOR c=0 TO 3

140 ZX Spectrum Next – User Manual

Chapter 16 – Colours BORDER, PAPER, INK, BRIGHT and FLASH

6 HiColour and HiRes modes are also called Timex modes as they were originally introduced in the Timex Sinclair
TS2068 advanced ZX Spectrum compatible computer which was released primarily for the US market in 1983.

80 INK c: PRINT c;" ";:REM 3

spaces

90 NEXT c: PAPER 0

100 FOR c=4 TO 7

110 INK c: PRINT c;" ";:REM 3

spaces

120 NEXT c: NEXT m

130 PAPER 7: INK 0: BRIGHT 0

This shows the fif teen colours (in clud ing white and black and the BRIGHT vari ants) that
the ZX Spec trum Next can pro duce on the screen if switched to Layer 0 (or stan dard res o -
lu tion modes of Layer 1) with out the En hanced ULA func tions en abled. Here is a list of the
ba sic eight for ref er ence; they are also writ ten over the ap pro pri ate num ber keys on your
ZX Spec trum Next's keyboard:

0 black
1 blue
2 red
3 pur ple –or ma genta–
4 green
5 cyan –or pale blue–
6 yel low
7 white

If you're think ing to your self that the to tal colours (tak ing ac count of bright ness turned on)
should be 16, you'd be tech ni cally right how ever there can not be a BRIGHT black so the to tal
amount of colours is in deed 15. As you've no ticed, the pro gram in tro duces three com mands:
PAPER, INK and BRIGHT. If you look back to the Col our at trib ute dis play sec tion you will rec -
og nize the terms im me di ately. These com mands are the pri mary way of ap ply ing col our to
ob jects on screen in NextBASIC. There is a num ber of sup port ing col our com mands as well
which will ex am ine fur ther in the fol low ing sec tions.

Be fore we delve a bit deeper into what each does and how, it's very im por tant to un der stand
that the com mands op er ate dif fer ently ac cord ing to the layer we're on and this points back to
the dif fer ent way the ZX Spec trum Next stores col our. When we're deal ing with modes that
make use of at trib ute cells, we need to think in terms of those cells. PAPER there af fects the
back ground or, in other words, the place in the cell where graphic data is non ex is tent (set to
0) whereas INK does the ex act op po site and af fects ar eas within the same cell where graphic
data is ex is tent (set to 1). More over these com mands af fect the en tire at trib ute cell and not just
one sin gu lar pixel within the cell. In other words, it does n't mat ter how many times you set the
INK or PAPER within a par tic u lar cell, only the last com mand will be the one that has the per -
ma nent ef fect for that cell. BRIGHT sim i larly af fects the en tire cell as we al ready saw, how ever
it does ab so lutely noth ing if En hanced ULA is en abled or if we are on modes that do not sup -
port at trib utes like HiRes, LoRes and Layer 2.

On LoRes and Layer2, since at trib ute cells do not ex ist, the en tire no tion of PAPER and INK
should be ir rel e vant. It is eas ier, how ever, for the user to un der stand them in sim i lar terms as
the at trib ute dis play modes i.e. in terms of a char ac ter-based dis play. In deed, there's noth ing
stop ping us from hav ing an 8 x 8 char ac ter drawn on screen (say a 2) with ev ery sin gle pixel
around the char ac ter hav ing a dif fer ent col our, some thing that's im pos si ble on at trib ute dis -
play modes. This how ever would be very dif fi cult to do in terms of a sin gu lar col our com mand
and for that rea son PAPER and INK com mands were sim ply ex tended to work in a sim i lar
man ner as their at trib ute cell modes' coun ter parts even where their un der ly ing me chan ics are
dif fer ent. On the other hand, in HiRes mode, PAPER and INK com mands only serve the pur -
pose of se lect ing a col our scheme as we will see be low. The fol low ing ta ble shows all pri mary
col our com mands func tion al ity according to the graphics mode we're in.

ZX Spectrum Next – User Manual 141

BORDER, PAPER, INK, BRIGHT and FLASH Chapter 16 – Colours

At trib ute Modes Non-At trib ute Modes

Stan dard ULA En hanced ULA

Layer 0 Layer 1,1 HiColour Layer 1,1, HiColour HiRes LoRes Layer2

INK 0-9*** 0-7 0-255 0-7* 0-255 0-255

PAPER 0-9*** 0-7 0-255 0-7* 0-255 0-255

BORDER 0-7 0-7 0-7** 0-7 0-7

FLASH 0-1,8*** 0-1 N/A N/A N/A N/A

BRIGHT 0-1,8*** 0-1 N/A N/A N/A N/A

Palette in use ULA ULA ULA ULA L2

* INK in HiRes is complimentary to PAPER i.e. when INK is 0 then PAPER is 7 and if INK is 3 then PAPER is 4 and so on.
** BORDER has no effect but it's set by the PAPER setting
*** INK/PAPER/BRIGHT/FLASH 8 mean Transparent, ergo it preserves the colour setting that was there previously and INK/PAPER 9 mean Contrast, ie. the complimentary

colour of the other statement (something similar to PAPER/INK settings for HiRes modes)

Ta ble 8 – Col our com mands' func tion al ity ac cord ing to Graphics Mode/Layer

There is an other way of us ing INK, PAPER etc, which you will prob a bly find more use ful
than hav ing them as state ments. You can put them as items in a PRINT state ment (fol -
lowed by ;), and they then do ex actly the same as they would have done if they had been
used as state ments on their own, ex cept that their ef fect is only tem po rary: it lasts as far as
the end of the PRINT state ment that con tains them. Thus if you type:

PRINT PAPER 6;"x";: PRINT "y"

then only the x will be on a yel low back ground.

When used as state ments in Layer 0, INK, PAPER, BRIGHT and FLASH, do not af fect the
colours of the lower part of the screen, where com mands and INPUT data are typed in.
The lower part of the screen uses the col our of the BORDER as its PAPER col our, value 9
for con trast as its INK col our, has FLASH turned off, and ev ery thing is set at nor mal
BRIGHT.

BORDER

Un doubt edly, you have no ticed thus far, that there is an area you can not write –nor mally–
to, sur round ing the area where you can print or draw graphics over. This area is called the
BORDER and us ing stan dard NextBASIC state ments you can only change its col our. The
state ment:

BORDER col our

changes the bor der col our to any of the eight nor mal colours (not 8 or 9) or colours
changed by the PALETTE state ment we shall ex plore be low in length.

INVERSE and OVER

There are two more state ments, INVERSE and OVER, which, when in an at trib ute mode,
con trol not the at trib utes, but the ac tual graphic data that is printed on the screen. They
use the num bers 0 for off and 1 for on in the same way as FLASH and BRIGHT do, but
those are the only pos si bil i ties. If you do INVERSE 1, then the graphic data printed will be
the in verse of their usual form: pa per pix els will be re placed by ink pix els and vice versa.

The state ment:

OVER 1

sets into ac tion a par tic u lar sort of over print ing. Nor mally when some thing is writ ten into a
char ac ter po si tion it com pletely oblit er ates what was there be fore; but now the new char -
ac ter will sim ply be added in on top of the old one (but see Ex er cise 1). Note that if the
char ac ter you're over print ing with has a pixel in the same po si tion with the char ac ter you're
print ing OVER, the re sult will be a blank pixel. In other words, OVER is a XOR op er a tion.

142 ZX Spectrum Next – User Manual

Chapter 16 – Colours BORDER

This can be par tic u larly use ful for writ ing com pos ite char ac ters, like let ters with ac cents on
them, as in this pro gram to print out Ger man let ters – an o with an um laut above it:

10 OVER 1

20 FOR n=1 TO 32

30 PRINT "o"; CHR$ 8;"""";

40 NEXT n

(no tice the con trol char ac ter CHR$ 8 which backs up one space.)

Using colour control codes

The pre vi ous ex am ple, re minded us of the PRINT po si tion ing con trol codes. We can do
ex actly the same with colours by us ing the spe cial col our con trol codes in a sim i lar man -
ner like the one we ex plored in Chap ter 15.

The col our con trol codes are:

CHR$ 16 corresponds to INK
CHR$ 17 corresponds to PAPER
CHR$ 18 corresponds to FLASH
CHR$ 19 corresponds to BRIGHT
CHR$ 20 corresponds to INVERSE
CHR$ 21 corresponds to OVER

These are each fol lowed by one char ac ter that shows a col our by its code: so (for in -
stance):

PRINT CHR$ 16 + CHR$ 9; …

has the same ef fect as:

PRINT INK 9; ...

ATTR

The ATTR func tion has the form:

ATTR (line, col umn)

Its two ar gu ments are the line and col umn num bers that you would use in an AT item, and
its re sult is a num ber that shows the colours and so on at the cor re spond ing char ac ter po -
si tion on the screen. You can use this as freely in ex pres sions as you can any other func -
tion.
The num ber that is the re sult is the sum of four other num bers as follows:

128 if the char ac ter po si tion is flash ing, 0 if it is steady
64 if the char ac ter po si tion is bright, 0 if it is nor mal
8 times the code for the pa per col our –and fi nally–
the code for the ink colour

For in stance, if the char ac ter po si tion is flash ing and nor mal with yel low pa per and blue ink
then the four num bers that we have to add to gether are 128,0,8*6=48 and 1, mak ing 177
al to gether. Test this with:

PRINT AT 0,0; FLASH 1; PAPER 6; INK 1;
" "; ATTR (0,0)

ATTR works only on Layer 0 and that is be cause it works by read ing each COLOUR_FILE
lo ca tion. On dif fer ent modes where the mem ory or gani sa tion and us age dif fers it will re -
turn a num ber that cor re sponds to the orig i nal COLOUR_FILE mem ory lo ca tion, which
could be for all pur poses non sense. That be ing said, you can get in for ma tion on the ex -

ZX Spectrum Next – User Manual 143

Using colour control codes Chapter 16 – Colours

tended col our at trib ute dis play if the En hanced ULA func tions are en abled pre sum ing the
screen area has n't moved. That num ber will cor re spond to the in di ces in use and it
changes ac cord ing to which PALETTE FORMAT com mand is in ef fect as we'll see be low.
For other modes it's safer to use the POINT TO com mand which we will ex am ine in Chap -
ter 17.

PALETTE

In pre vi ous sec tions of this chap ter we got in tro duced to the sub ject of pal ettes and how
they af fect col our dis play and ma nip u la tion in each of the col our modes. We also got
briefly in tro duced to the PALETTE key word and a few of its uses. We can now ex pand a bit
more on the sub ject, as PALETTE not only af fects print ing of the char ac ters on screen but
also all as pects of graphics in clud ing the ZX Spec trum Next's Sprite Engine.

The PALETTE key word can be used as a pri mary state ment or as a mod i fier to the LAYER
and SPRITE state ments to per form a va ri ety of func tions that per tain to col our ma nip u la -
tion.

As we saw, col our on the ZX Spec trum Next when us ing ex tended col our at trib ute dis play
or any mode that does n't use at trib utes, can be de fined us ing 9 bits or 8 bits per col our.
The de fault is 9; when 8 bits are cho sen, as we have al ready seen pre vi ously, non at trib ute
modes can em u late a straight-up bitmapped lin ear dis play (with the side-ef fect that only 4
lev els of blue are avail able). In the lat ter case you can ba si cally ig nore all PALETTE state -
ments as non-ap pli ca ble for Layer 2 –and this whole sec tion for that mat ter– how ever you
need to use them if you want to ma nip u late LoRes or any of the Layer 1 and Layer 0 modes
and/or change the de fault colours any where in your sys tem, or even to recolour an old
game. In or der to do that and to have ac cess to the broad est gamut of col our you will need
to change the bit-depth of your pal ette(s). You can do so with the PALETTE DIM
statement in the form:

PALETTE DIM bits

where bits can be 8 or 9.

The de fault col our mode of Layer 1 modes (ex cept LoRes and HiRes) is the stan dard col -
our at trib ute dis play one. In or der to en able the ex tended col our at trib ute dis play mode we
need to en able the En hanced ULA func tion al ity. For this you must use the PALETTE
FORMAT which takes the form:

PALETTE FORMAT ink_count

where ink_count is a nu mer i cal ex pres sion spec i fy ing the num ber of inks to be in the pal -
ette (0,1,3,7,15,31,63,127 or 255). When the En hanced ULA is en abled, BRIGHT and
FLASH are ig nored, and INK and PAPER ac cept the ap pro pri ate new range of val ues.
Note here that al though you can spec ify INK and PAPER val ues up to 255 when writ ing a
pro gram, at tempt ing to ex e cute the pro gram in Layer 0 will re sult into a K In valid Col our
er ror when the En hanced ULA is not en abled. To dis able the En hanced ULA func tion al ity
you will need to spec ify an ink count of 0. The stan dard at trib utes with 8 inks, 8 pa pers,
bright and flash are then once again supported.

As we saw in Fig. 17 there is an or der of dis play of dif fer ent lay ers on screen. Al though it is
not im me di ately ap par ent this means that it's also pos si ble to mix dis play out put from
more than one graph i cal lay ers. That is achieved by as sign ing a global trans par ency mask
for the reg u lar lay ers or, in the case of the Sprites layer, a trans par ency in dex, and then
colour ing the ar eas or sprites we want to be trans par ent with the specific colour.

You can set the trans par ency col our mask or trans par ency col our in dex us ing the fol low ing
state ment:

PALETTE OVER value

144 ZX Spectrum Next – User Manual

Chapter 16 – Colours PALETTE

where value is an 8-bit nu meric ex pres sion which iden ti fies a col our ei ther in R3G3B2 8-bit
for mat (in the case of reg u lar graphics lay ers) or the in dex to the 9bit col our value we want
to be trans par ent (in the case of the Sprites layer). The de fault global trans par ency mask
and trans par ency col our in dex is light ma genta / 227 (11100011 in binary).

To re set all pal ette data and set tings to de fault, use the PALETTE CLEAR state ment.

In the Pal ette-based hy brid lin ear bitmapped col our dis play sec tion, we first dis cussed the
ex is tence of two pal ettes per dis play layer (note here that in this case layer is meant in the
mem ory us age par a digm dis played in Fig. 17 so ULA lay ers get grouped together).

We can switch be tween pal ettes us ing the com pound key word:

LAYER PALETTE n

where n is the pal ette to use (0 or 1) for the cur rent mem ory us age layer (ie. if you're in any
ULA layer all of it gets af fected but not Layer 2 etc).

You can point a pal ette for the cur rent layer to pal ette data you have pre vi ously stored in
mem ory us ing the fol low ing com pound command:

LAYER PALETTE num ber BANK bank, off set

where num ber is the pal ette to up date (0 or 1) for the cur rent mem ory us age layer, bank is
the mem ory bank to point to, and off set is the off set within that mem ory bank (For more in -
for ma tion about BANK see Chap ter 24 – The Mem ory).

Pal ette data should be ei ther 256 dou ble byte col our en tries (for 9-bit), or 256 sin gle byte
en tries (for 8-bit). As per what we dis cussed ear lier in the chap ter we need to en code the
col our in for ma tion in an R3G3B2 (for 8-bit) or RGB3 (for 9-bit) with ev ery col our com po -
nent value de scrib ing 8 in ten si ties per colour.

In the dou ble-byte en try method, the sec ond byte in each se quence only has one bit de -
fined for col our: the 3rd blue bit as well as one bit for pri or ity (which only ap plies to pal ettes
used for Layer2). It may seem to be a bit in ef fi cient as it stands, be cause it ap pears to be
wast ing mem ory but that's only if we store our pal ette in mem ory be fore we load it, oth er -
wise pal ettes do not use mem ory at all and they only need to be set once and the mem ory
used by the BANK method can be im me di ately released to the system.

You have al ready seen an ex am ple of this method in the Ex tended Col our At trib ute Dis play
Sys tem sec tion where a pal ette is set up first as colours and then as signed into the cho sen
layer pal ette. Could you change it to ac cept dou ble-byte colour values?

The ta bles that fol low, show the proper for mat for sin gle and dou ble-byte pal ette en tries.
The in te ger val ues are in cluded for a better un der stand ing of the con ver sion pro cess. In
ac tu al ity, you can use ei ther the BIN key word or the %@ qual i fier to en ter bi nary numbers
directly.

ZX Spectrum Next – User Manual 145

PALETTE Chapter 16 – Colours

The global transparency colour being 8-bit follows the exact same conventions as the
internal 8-bit to 9-bit conversion for any other colour in the ZX Spectrum Next's gamut.

More over, the global transparency is an 8-bit MSB mask meaning that both 111000110
and 111000111 will be transparent if selected to fill an area.

In however the case of Sprites, transparency is only limited to the single colour pointed
to by the index referenced by the PALETTE OVER keyword. So if index 227 is set to red
(111000000 in binary) leaving the PALETTE OVER keyword the same for two palettes
only the red colour will be transparent and not the magenta as on the previous example.

First Byte Sec ond Byte

R1 R2 R3 G1 G2 G3 B1 B2 P2 0 0 0 0 0 0 B3

128 64 32 16 8 4 2 1 0 0 0 0 0 0 0 1
4 2 1 4 2 1 2 1 0 0 0 0 0 0 0 1
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Ta ble 9 – Dou ble byte col our en try

First Byte

R1 R2 R3 G1 G2 G3 B1 B2

128 64 32 16 8 4 2 1
4 2 1 4 2 1 2 1
7 6 5 4 3 2 1 0

Ta ble 10 – Sin gle byte col our en try

Writ ing the en tire pal ette into mem ory is not the only op tion avail able to the user in or der to
pro gram a pal ette. It is also pos si ble to spec ify in di vid ual colours within the pal ette us ing
the fol low ing com pound com mand (as with the rest of the ex am ples in this sec tion layer
here im plies a mem ory space organisational unit):

LAYER PALETTE num ber, in dex, value

where num ber is the cur rent layer pal ette we wish to up date (0 or 1), in dex is the in dex of
the pal ette en try to be up dated (0 to 255), and value is the col our com po nents value ex -
pressed in bi nary us ing ei ther the BIN key word or the %@ qual i fier in RGB3 for mat. That
means that the col our in that case is ALWAYS 9-bit For example:

LAYER PALETTE 0,0,BIN 110010011

that sets col our in dex 0 in pal ette 0 to a nice pink is ex actly the same as:

LAYER PALETTE 0,0,%@110010011

Exercises

1. Try:

PRINT "B"; CHR$ 8; OVER 1; "/"

Where the / has cut through the B, it has left a white dot. This is the way over print ing
works on the ZX Spec trum: two pa pers or two inks give a pa per, one of each gives
an ink. This has the in ter est ing prop erty that if you over print with the same thing
twice you get back what you started off with. If you now type:

PRINT CHR$ 8; OVER 1; "/"

Why do you re cover an un blem ished B?

2. Type:

PAPER 0: INK 0

Is n’t it just as well that these don’t af fect the lower part of the screen?
Now type:

BORDER 0

146 ZX Spectrum Next – User Manual

Chapter 16 – Colours PALETTE

and see how well the com puter looks af ter you!
But what will hap pen if you do the same af ter giv ing:

LAYER 1,3

3. Run this pro gram:

10 POKE 22527+RND*704, RND*127

20 GO TO 10

Never mind how this works; it is chang ing the colours of squares on the screen
and the RNDs should en sure that this hap pens ran domly. The di ag o nal stripes
that you even tu ally see are a man i fes ta tion of the hid den pat tern in RND – the
pat tern that makes it pseudorandom in stead of truly random.

4. Type in the chess piece char ac ters in Chap ter 14, and then type in this pro gram
which draws a di a gram of chess po si tions us ing them:

5 REM draw blank board

10 LET bb=1: LET bw=2: REM red and

 blue for board

15 PAPER bw: INK bb: CLS

20 PLOT 79,128: REM bor der

30 DRAW 65,0: DRAW 0,-65

40 DRAW -65,0: DRAW 0,65

50 PAPER bb

60 REM board

70 FOR n=0 TO 3: FOR m=0 TO 3

80 PRINT AT 6+2*n, 11+2*m;" "

90 PRINT AT 7+2*n, 10+2*m;" "

100 NEXT m: NEXT n

110 PAPER 8

120 LET pw=6: LET pb=5: REM colours of

 white and black pieces

200 DIM b$(8,8): REM po si tions of pieces

205 REM set up ini tial po si tions

210 LET b$(1)="rnbqkbnr"

220 LET b$(2)="pppppppp"

230 LET b$(7)="PPPPPPPP"

240 LET b$(8)="RNBQKBNR"

300 REM dis play board

310 FOR n=1 TO 8: FOR m=1 TO 8

320 LET bc=CODE b$(n,m): INK pw

325 IF bc=CODE " " THEN GO TO 350

 : REM space

330 IF bc>CODE "Z" THEN INK pb:

 LET bc=bc-32: REM low er case for

 black

340 LET bc=bc+79: REM con vert to

 graphics

350 PRINT AT 5+n, 9+m; CHR$ bc

360 NEXT m: NEXT n

400 PAPER 7: INK 0

ZX Spectrum Next – User Manual 147

PALETTE Chapter 16 – Colours

5. The pro gram in p. 122 has a non-ap par ent flaw. Can you im prove on it so it be -
comes faster?

6. Write a ver sion of ATTR us ing a PROCedure that will work al ways, no mat ter the
mode. You can peek ahead if you so wish!

7. Us ing the global trans par ency col our, pal ettes and lay ers can you write a pro gram
that will dis play ALL 512 colours of the ZX Spec trum Next on screen? (It's eas ier
than you think)

148 ZX Spectrum Next – User Manual

Chapter 16 – Colours PALETTE

Graphics

Graphics

In this chap ter, we shall see how to draw pic tures on your ZX Spec trum Next's screen. As
we learned in Chap ters 15 and 16, Layer 0 can only use 175 pix els out of its max i mum 192
pixel ver ti cal res o lu tion while the other lay ers ac cept the max i mum height de fined by the
layer as their ver ti cal res o lu tion. More over, if you re call Fig. 15 and 16, Layer 0 has a dif fer -
ent graphics co or di nate or i gin from the rest of the lay ers/modes lo cated at the bot tom
leftmost of the screen in stead of the top leftmost. All ba sic graphics com mands that we
will ex plore (PLOT, DRAW, CIRCLE and POINT) ac cept both co or di nate or i gins while the
LAYER and TILE com mands (as well as the SPRITE com mand we'll ex plore in the fol low -
ing chap ter) ac cept only the top leftmost cor ner as the co or di nate or i gin. The side-ef fect of
these in verted co or di nate sys tems is that most graphics you will pro gram will ap pear in -
verted on the y-axis if you do not account for that difference. We'll illustrate this fact shortly.

PLOT

The state ment:

PLOT x_co or di nate, y_co or di nate

inks in the pixel with these co or di nates, so this mea sly pro gram:

10 PLOT INT(RND*128), INT

(RND*96):INPUT a$: GO TO

10

plots a ran dom point each time you press ENTER. This will work on all lay ers1, al though it
will not use the en tire area of the screen in all modes. Can you fig ure out why?

Here is a rather more in ter est ing pro gram. It plots a graph of the func tion SIN (a sine wave)
for val ues be tween 0 and 2p:

10 FOR n=0 TO 255: REM change

to 127 for LoRes

20 PLOT n,88+80*SIN(n/128*PI)

30 NEXT n

This next pro gram plots a graph of SQR (part of a pa rab ola) be tween 0 and 4:

10 FOR n=0 TO 255

20 PLOT n,80*SQR (n/64)

30 NEXT n

No tice that when in Layer 0, pixel co or di nates are rather different from the line and col umn in
an AT item. You may find the di a grams in Chap ter 15 use ful when work ing out pixel co or di -
nates and line and col umn num bers for Layer 0. The other lay ers as we've al ready dis cussed
are pretty straight for ward. To il lus trate, switch to HiRes and try again. What you see when en -
ter ing:

5 LAYER 1,2

10 FOR n=0 TO 255

20 PLOT n,80*SQR (n/64)

30 NEXT n

and run the pro gram is ex actly what we were talk ing about ear lier. Our part of pa rab ola has
changed both ori en ta tion and stops at the mid dle of the screen's width. To make the out -
put sim i lar to the the first it er a tion of the pro gram you will need to change the FOR loop

150 ZX Spectrum Next – User Manual

Chapter 17 – Graphics PLOT

1 All layers, EXCEPT Layer 3 as it's not directly supported by NextBASIC.

and PLOT commands to:

10 FOR n= 0 TO 511

20 PLOT n,80*SQR((511-n)/128)

This will in vert the co or di nates to sim u late the Layer 0 dis play, by draw ing in verted, ex tend the
PLOT x co or di nate to 512 pix els and make sure the PLOT does n't get out of bounds (that's why
we di vide by 128 in stead of 64). In re al ity, you do not need to check if you PLOT out of bounds
for lay ers other than Layer 0, as graphics com mands for these ac cept lo ca tions out side the
screen's pixel bound aries, how ever it's good prac tice to do so if you want your pro gram to work
across lay ers.

DRAW and CIRCLE

To help you with your pic tures, the com puter will draw straight lines, cir cles and parts of
cir cles for you, us ing the DRAW and CIRCLE state ments.

The state ment DRAW to draw a straight line takes the form:

DRAW x_co or di nate, y_co or di nate

The start ing place of the line is the pixel where the last PLOT, DRAW or CIRCLE state ment
left off (this is called the PLOT po si tion; RUN, CLEAR, CLS and NEW re set it to the co or di -
nate 0 of the se lected Layer (bot tom left hand cor ner, at (0,0) for Layer 0, top left hand cor -
ner for all other lay ers), and the fin ish ing place is x pix els to the RIGHT of that and y pix els
UP or DOWN de pend ing on which layer you're on. This would be UP for Layer 0 and DOWN
for all other lay ers. The DRAW state ment on its own de ter mines the length and di rec tion of
the line, but not its starting point.

Ex per i ment with a few PLOT and DRAW com mands, for in stance:

PLOT 0,100: DRAW 80,-35

PLOT 90,150: DRAW 80,-35

No tice that the num bers in a DRAW state ment can be neg a tive, al though those in a PLOT
state ment can't. Re mem ber al ways, that the dis play di rec tion of the DRAW state ment
changes ac cord ing to the co or di nate sys tem used, ergo which layer you choose is very
im por tant. You can also plot and draw in col our, al though you have to bear in mind all that
were dis cussed in Chap ter 16. De pend ing on the cho sen layer, colours may cover the
whole of an at trib ute po si tion in stead of in di vid ual pix els. Only LoRes and Layer 2 modes
of fer full in di vid ual col our pixel con trol whereas other lay ers rely on the at trib ute used. The
following program demonstrates this:

10 LAYER 2,0: REM disable Layer 2

20 FOR m=0 TO 5

30 PROC LayChange (m)

40 BORDER 0: PAPER 0: INK 7: CLS: REM

black out screen

50 LET x1=0: LET y1=0: REM line start

60 LET c=1: REM ink, starts with blue

70 FOR r = 0 TO 9:REM 10 repetitions

80 LET x2=INT (RND*256): LET y2=INT

(RND*128): REM random line end

90 DRAW INK c;x2-x1,y2-y1

100 LET x1=x2: LET y1=y2: REM next line

starts where last one finished

110 LET c=c+1: IF c=8 THEN LET c=1

120 NEXT r

130 PAUSE 0: REM Display inspection

ZX Spectrum Next – User Manual 151

DRAW and CIRCLE Chapter 17 – Graphics

140 NEXT m

150 STOP

1000 DEFPROC LayChange (mode)

1010 IF mode = 0 THEN LAYER 0

1020 IF mode = 1 THEN LAYER 1,0

1030 IF mode = 2 THEN LAYER 1,1

1040 IF mode = 3 THEN LAYER 1,2

1050 IF mode = 4 THEN LAYER 1,3

1060 IF mode = 5 THEN LAYER 2,1

1070 ENDPROC

In layers other than LoRes and Layer 2, you can see how the lines seem to get broader as
the program goes on, and this is because a line changes the colours of all the inked-in
pixels of all the attribute positions that it passes through. You may also be temporarily
perplexed about how the program doesn't crash on LoRes given that the selected values
can exceed these of the physical resolution (see line 80). This would definitely be true for
compatibility reasons on Layer 0, however on other layers, graphics output off screen is
permitted for x and y values up to 65535. Note that you can embed PAPER, INK, FLASH
(only on layers that this is available or not turned off by enabling the Enhanced ULA
functionality), BRIGHT (idem), INVERSE and OVER items in a PLOT or DRAW statement
just as you could with PRINT and INPUT. They go between the keyword and the
coordinates, and are terminated by either semicolons or commas.

An ex tra frill with DRAW is that you can use it to draw parts of cir cles in stead of straight
lines, by us ing an ex tra num ber to spec ify an an gle to be turned through; the form is:

DRAW x_co or di nate, y_co or di nate, arc_turn

x_co or di nate and y_co or di nate are used to spec ify the fin ish ing point of the line just as be -
fore and arc_turn is the num ber of ra di ans that it must turn through as it goes; if arc_turn is
a pos i tive it turns to the left, while if arc_turn is a neg a tive it turns to the right. An other way of
see ing arc_turn is as show ing the frac tion of a com plete cir cle that will be drawn: a com -
plete cir cle is 2p ra di ans, so if a=p it will draw a semi cir cle, if a=0.5*p a quar ter of a circle,
and so on.

For in stance sup pose a=p . Then what ever val ues x and y take, a semi cir cle will be drawn.
Run:

10 PLOT 100,100: DRAW 50,50, PI

which will draw this:

When run on Layer 0, the draw ing starts off in a south-east erly di rec tion, but by the time it
stops it is go ing north-west: in be tween it has turned round through 180 de grees, or p ra di -

152 ZX Spectrum Next – User Manual

Chapter 17 – Graphics DRAW and CIRCLE

Fig. 22 - Arc drawn with DRAW statement

ans (the value of a). Ob vi ously, when run on other lay ers, the ver ti cal part of the draw ing is
in verted in line with ev ery thing we have discussed.

Run the pro gram sev eral times, with Pl re placed by var i ous other ex pres sions e.g. -PI,
PI/2, 3*PI/2, PI/4, 1,0.

The last state ment in this sec tion is the CIRCLE state ment, which draws an en tire cir cle.
You spec ify the co or di nates of the cen tre and the ra dius of the cir cle using:

CIRCLE x_co or di nate, y_co or di nate, ra dius

Just as with PLOT and DRAW, you can put the var i ous sorts of col our items in at the be -
gin ning of a CIRCLE state ment. As with its PLOT and DRAW coun ter parts, CIRCLE, when
used in Layer 0 will pro duce an er ror for cir cles drawn out of bounds but the re main ing lay -
ers will hap pily draw off-screen.

POINT, POINT TO

The POINT func tion informs you of the con tents of a pixel on screen. It ac cepts two pa -
ram e ters en closed in pa ren the ses, x_co or di nate and y_co or di nate. POINT on its own
works only on Layer 0 and re turns 1 if the pixel is set or 0 if not set. Whilst in Layer 0 try:

CLS: PRINT POINT (0,0): PLOT 0,0

:PRINT POINT (0,0)

There's an ex tended vari ant of POINT uti lis ing the TO mod i fier which works on all lay ers,
that takes the out put of POINT and stores it in vari able var. This re turns 1 if the pixel is set
or 0 if not set in all lay ers ex cept LoRes and Layer 2 just as the plain POINT does. In LoRes
and Layer 2 how ever, it re turns a value from 0 to 255 which is the ac tual pal ette in dex en try
that the pixel with these co or di nates is set to. To il lus trate this re write the previous example
as:

CLS: POINT 0,0 TO t: PRINT t: PLOT
0,0:POINT 0,0 TO t: PRINT t

Al though this may not be the best ex am ple for the ben e fits of us ing POINT TO in stead of
the sim ple POINT, you can save a lot of typ ing by fore go ing a lot of LET state ments whilst,
at the same time, mak ing your code a lot eas ier to read and work ing in ev ery graphics
mode. It's im por tant to men tion that POINT TO does not re turn the con tents of a sprite
that's cur rently on the given co or di nates on screen and in stead will re turn the con tents of
the layer it's run on.

Using OVER and INVERSE with graphics commands

En ter screen mode (EDIT for NextBASIC Menu and then the Screen op tion) in the ed i tor
and then type:

ZX Spectrum Next – User Manual 153

POINT, POINT TO Chapter 17 – Graphics

Due to the way values are calculated, it's not advisable to use values exceeding p for the
arc_turn parameter as they may not perform in the way you would intend. That being
said there are various values that produce very interesting results. Try:

PLOT 75,75: DRAW 80, 24, x

where x is 400, 600 or 800. Experiment further to see what other effects you can
generate.

POINT here is a function and not a PRINT modifier. Note the distinction as it's important.

PAPER 7: INK 0

and let us in ves ti gate how INVERSE and OVER work in side a stan dard graphics state -
ment. These two af fect just the rel e vant pixel, and not the rest of the char ac ter po si tions.
They are nor mally off (0) in a graphics state ment, so you only need to men tion them to turn
them on (1).

Here is a list of the pos si bil i ties for ref er ence:

• PLOT: This is the usual form. It plots an ink dot, i.e. sets the pixel to show the
ink colour.

• PLOT INVERSE 1: This plots a dot of ink eradicator, i.e. it sets the pixel to show
the paper colour.

• PLOT OVER 1: This changes the pixel over from whatever it was before: so if it
was ink colour it becomes paper colour, and vice versa.

• PLOT INVERSE 1; OVER 1: This leaves the pixel exactly as it was before; but
note that it also changes the PLOT position, so you might use it simply to do
that.

As an other ex am ple of us ing the OVER state ment fill the screen up with writ ing us ing black
on white, and then type:

PLOT 0,0: DRAW OVER 1;255,175

This will draw a fairly de cent line, even though it has gaps in it wher ever it hits some writ ing.
Now do ex actly the same com mand again. The line will van ish with out leav ing any traces
what so ever. This is the great ad van tage of OVER 1. If you had drawn the line using:

PLOT 0,0: DRAW 255,175

and erased it us ing:

PLOT 0,0: DRAW INVERSE 1;255,175

then you would also have erased some of the writ ing. Now try:

PLOT 0,0: DRAW OVER 1;250,175

and try to undraw it by:

DRAW OVER 1;-250,-175

This does n't quite work, be cause the pix els the line uses on the way back are not quite the
same as the ones that it used on the way down. You must undraw a line in ex actly the
same di rec tion as you drew it.

Note, that be ing in screen mode in the ed i tor is re quired for the ex am ples above, oth er -
wise the screen will be re set af ter each com mand and you will not get to see the re sults of
the OVER and INVERSE modifiers.

Using stippling patterns to generate additional colours

One way to get un usual colours is to mix two nor mal ones to gether in a sin gle square, us -
ing a user-de fined graphic. These pat terns are called stip ples and work rea son ably well in
lower lay ers other than LoRes (where the pix els are too big) and ex cep tion ally well in Layer
2 where both the avail able colours and res o lu tion com bine to make the re sults quite be -
liev able. Run this program:

1000 FOR n=0 TO 6 STEP 2

1010 POKE USR "a"+n, BIN

01010101: POKE USR

"a"+n+1, BIN 10101010

1020 NEXT n

154 ZX Spectrum Next – User Manual

Chapter 17 – Graphics Using stippling patterns to generate additional colours

which gives the user-de fined graphic cor re spond ing to a chess board pat tern. If you print
this char ac ter (Graphics mode, then A) in red ink on yel low pa per, you will find it gives a
rea son ably ac cept able or ange. You can ob vi ously sim u late the same be hav iour with
PLOT state ments. This is slower than UDGs but it's much more flex i ble in the di ver sity of
pat terns that you can create.

Quick erase and fill using LAYER ERASE

NextBASIC lacks a ded i cated fill com mand, how ever large rect an gu lar ar eas on screen
can be filled (or emp tied) in LoRes and Layer 2 us ing the com pound LAYER ERASE state -
ment with 4 co or di nate pa ram e ters (+ 1 op tional fill pa ram e ter). The command:

LAYER ERASE x1,y1,x2,y2,c

will fill the rect an gu lar area de lin eated by (x1,y1) and (x2,y2) with the global trans par ency
col our (if the op tional c pa ram e ter is not spec i fied) or with the col our in dex con tained in the
c pa ram e ter taken from the ac tive pal ette for the selected layer.

Clipping windows

One of the nicer fea tures that come as a re sult of the layer sys tem is the abil ity to su per im -
pose/com bine graphics that ex ist in sep a rate mem ory spaces. This is pos si ble on the one
hand due to the ex is tence of the trans par ency col our and on the other hand due to the
abil ity to or der the layer su per im po si tion or der. The lat ter is con trol la ble via the LAYER
OVER com pound com mand as we saw in the More about the LAYER com mand sec tion in
Chap ter 16.

This can be fur ther en hanced with the cre ation of clip ping win dows which are ba si cally
smaller ar eas of a cer tain layer where all dis play in this layer goes and leaves the lay ers un -
der neath vis i ble (with out hav ing to set the en tire area to be vis i ble to a trans par ent col our).
If you wish to visu al ise this, imag ine a glass win dow with a rect an gu lar sec tion painted so
you can not see what's be hind. That rect an gu lar sec tion is the clip ping win dow, in es sence
the op po site of a regular window. The compound command:

LAYER DIM x1,y1,x2,y2

sets the clip win dow for the cur rent layer from (x1,y1) to (x2,y2). Ar eas of the layer out side
this win dow are not vis i ble. Note that all Layer 1 modes and Layer 0 share the same clip
win dow; Layer 2, Layer 3 and the Sprite Sys tem have their own sep a rate clip win dows. Re -
fer to Chap ter 23 for more in for ma tion on how clip ping win dows are de fined us ing the Next
Reg is ters. The compound command:

LAYER CLEAR

will re set all layer in for ma tion to de faults. This is also done by NEW. It re sets banks, mode,
Layer 2 en able sta tus, layer off sets / clip ping win dows and layer or der ing.

Tiling

Since straight graphics com mands can be slow, NextBASIC pro vides a set of com mands
that can help rec re ate parts of, or en tire Layer 2 and LoRes screens, very quickly; some -
thing that can be very use ful es pe cially when a lot of screen el e ments are be ing re peated.
These screen el e ments are called tiles and much like their real-word coun ter parts, they are
a self-con tained graph i cal rect an gu lar pat tern. Tiles can be re peated as many times as we
need them to or be completely independent.

Each tile can be 8x8 pix els or 16x16 pix els in size. This al lows a 16K bank to hold 256 8x8
tiles or 64 16x16 tiles. Tiles are num bered 0...255. There fore, a com plete set of 8x8 tiles oc -
cu pies a sin gle 16K bank, and a com plete set of 16x16 tiles oc cu pies 4 16K banks. If you
use 16x16 tiles, you can re strict the tile num ber used and there fore re duce the mem ory re -
quire ments (e.g. if you need 64 or fewer dif fer ent tiles, only 1 16K bank is re quired). Ad di -

ZX Spectrum Next – User Manual 155

Quick erase and fill using LAYER ERASE Chapter 17 – Graphics

tion ally for tiles to be re called, a spe cial lin ear map, called a tilemap2, of 8-bit tile num bers
is needed. The user can spec ify any width up to 2048 tiles; each row of tiles fol lows di rectly
after the previous one.

The tilemap must be fully con tained in side a sin gle 16K bank. This gives a max i mum
tilemap size of 256x64, 128x128, 2048x8 etc.

Any pix els in a tile which are the same col our as the cur rent global trans par ency col our will
not be writ ten to the screen. If you want to draw pix els con tain ing the global trans par ency
col our you can tem po rarily change it to an other col our (not used in your tiles) us ing the
PALETTE OVER com mand be fore us ing TILE. Al ter na tively, you can use the LAYER
ERASE com mand (see the Quick erase and fill sec tion above) to clear re gions of the
screen to the global trans par ency col our be fore draw ing tiles on top.

Layer 2 and LoRes tilemaps are stored sep a rately, so you can use both si mul ta neously.
The TILE com mands af fect the cur rently se lected layer/mode. These are:

TILE BANK n

which de fines bank n as con tain ing the tiles (up to 4 banks n...n+3 if 16x16 tiles).

TILE DIM n,off set,w,tilesize

de fines bank n as con tain ing the tilemap, start ing at off set off set in the bank. The tilemap is
width w (1–2048) and uses 8x8 (tilesize=8) or 16x16 (tilesize=16) tiles.

TILE
TILE AT x,y

Draws an en tire screen from tilemap, from tile off set x,y in the tilemap (0,0 if not spec i fied).

TILE w,h
TILE w,h AT x,y
TILE w,h TO x2,y2
TILE w,h AT x,y TO x2,y2

The above draw a sec tion of screen from a tilemap. Num ber of tiles to draw is width w,
height h. The AT draws from tile off set x,y in the tilemap (or 0,0 if not spec i fied as in the pre -
vi ous ex am ple), and the TO draws to the tile off set x2,y2 on the screen (or 0,0 if not spec i -
fied).

Exercises

1. Play about with PAPER, INK, FLASH and BRIGHT items in a PLOT state ment.
These are the parts that af fect the whole of the char ac ter po si tion con tain ing the
pixel. Nor mally it is as though the PLOT state ment had started off:
PLOT PAPER 8; FLASH 8; BRIGHT 8;

and only the ink col our of a char ac ter po si tion is al tered when some thing is plot ted
there, but you can change this if you want. Be es pe cially care ful when us ing
colours with INVERSE 1, be cause this sets the pixel to show the pa per col our, but
changes the ink col our and this might not be what you expect.

2. Try:
CIRCLE 100,87,80: DRAW 50,50

You can see from this that the CIRCLE state ment leaves the PLOT po si tion at a
rather in de ter mi nate place – it is al ways some where about half way up the right
hand side of the cir cle. You will usu ally need to fol low the CIRCLE state ment with a
PLOT state ment be fore you do any more drawing.

156 ZX Spectrum Next – User Manual

Chapter 17 – Graphics Tiling

2 You may remember that we spoke of tiles before, when initially discussing Layer 3 in Chapter 15. The principle is the
same (a repeated rectangular pattern) but the specifics change (9-bit colour vs. 4-bit or 1-bit colour and 16x16 -or-
8x8 pixel tiles vs. ONLY 8x8 pixel tiles).

Time and Motion

This page intentionally left blank

Time and Motion

One of the most im por tant fea tures of the ZX Spec trum Next is the abil ity to move things
on screen fast, ei ther via the us age of sprites or by quickly in ter chang ing full screens to
cre ate an i ma tions and gen eral vi sual ef fects. Mo tion (and an i ma tion) how ever, as on real
life, is a func tion of time. In other words we need to pre cisely count time in or der to dis play
things and for this pur pose this chap ter will deal with these two seem ingly un re lated sub -
jects in one unit. We will be gin with the whole idea of timekeeping on the com puter and all
the fa cil i ties the ZX Spec trum Next has in order for us to measure time.

Timekeeping is es sen tial in com put ing as all de vices work on the ba sis of a unit of time (in
our case Hertz –or– Hz) but much of this hap pens be hind the scenes. Here we will ex am -
ine com mands re lated to time to gether with the op tional tim ing hard ware, be fore we move
into an i ma tion, scroll ing, the Sprite En gine and even tu ally to the Copper.

PAUSE

While the gen eral at ti tude in pro gram ming is to make things ex e cute as fast as pos si ble,
we of ten find our selves in need of mak ing our pro gram wait for a spe cific length of time or
even in def i nitely. There is a num ber of rea sons why that would be the case; ex pect ing user
in ter ac tion is one; dis play ing warn ings is an other, tim ing pre cisely some thing is a third
and for all the above and more you will find the PAUSE statement useful.

PAUSE n

stops com put ing and dis plays the pic ture for n frames of the se lected dis play mode.

In 50Hz mode, there are 50 frames-per-sec ond (fps), so set ting n to 50 would re sult in 1
sec. pause. Re spec tively in 60Hz mode which runs at 60 fps this fig ure would be 60 for 1
sec. pause.

These modes are set these at the Con fig u ra tion boot menu or via the config.ini file which
is lo cated in the c:/ma chines/next/ folder. Gen er ally speak ing, al most all mod ern HDMI™
and VGA dis plays op er ate at 60Hz, while many also have 50Hz modes.

n can be up to 65535, which gives you just a lit tle over 21 min utes at 50Hz and just un der
19 min utes at 60Hz re spec tively; if n is set to 0 then it means PAUSE in def i nitely.

A pause of any length (in clud ing the in def i nite ones) can al ways be cut short by press ing a
key (note that CAPS SHIFT + Space will cause a break as well). You have to press the
key down af ter the pause has started.

This pro gram works the sec ond hand of a clock:

10 REM First we select the

appropriate pause

20 LET wait=52:REM 50Hz/50=1 sec.

30 REM First we draw the clock face

40 FOR n=1 TO 12

50 PRINT AT 10-10*COS(n/6*PI),

16+10*SIN(n/6*PI);n

60 NEXT n

70 REM Now we start the clock

80 FOR t=0 TO 200000: REM t is the

time in seconds

90 LET a=t/30*PI : REM a is the

angle of the second hand in rad.

100 LET sx=80*SIN a: LET sy=80*COS a

200 PLOT 128,88: DRAW OVER 1;

sx,sy: REM draw 2nd hand

ZX Spectrum Next – User Manual 159

PAUSE Chapter 18 – Time and Motion

210 PAUSE wait

220 PLOT 128,88: DRAW OVER 1;

sx,sy: REM erase 2nd hand

400 NEXT t

This clock will run down af ter about 55.5 hours be cause of line 60, but you can eas ily make
it run lon ger. Note how the tim ing is con trolled by line 20. When run ning in 50Hz mode, you
might ex pect PAUSE 50 to make it tick one a sec ond, but the com put ing takes a bit of time
as well and has to be al lowed for. This is best done by trial and er ror, tim ing the com puter
clock against a real one, and ad just ing line 20 un til they agree. (You can’t do this very ac -
cu rately; an ad just ment of one frame in one sec ond is 1.67% or less than half an hour in a
day.)

Using POKE and PEEK at the System Variables

There is a much more ac cu rate way of mea sur ing time. This uses the con tents of cer tain
mem ory lo ca tions. The data stored is re trieved by us ing PEEK. Chap ter 25 – The Sys tem
Vari ables, ex plains what we’re look ing at in de tail. The ex pres sion used is:

(65536*PEEK 23674+256*PEEK 23673+PEEK 23672)/50

which gives the num ber of sec onds since the com puter was turned on (up to about 3 days
and 21 hours, when it goes back to 0). Here is a re vised clock pro gram to make use of
this:

10 REM First we draw the clock face

20 FOR n=1 TO 12

30 PRINT AT 10-10*COS(n/6*Pl),

16+10*SIN(n/6*Pl);n

40 NEXT n

50 DEF FN t()=INT ((65536*PEEK

23674+256*PEEK 23673 + PEEK

23672) / 50): REM number of

seconds since start

100 REM Now we start the clock

110 LET t1=FN t()

120 LET a=t1/30*PI: REM a is the

angle of the second hand in

radians

130 LET sx=72*SIN a: LET sy=72*COS a

140 PLOT 131,91: DRAW OVER 1;sx,sy:

REM draw hand

200 LET t=FN t()

210 IF t<=t1 THEN GO TO 200: REM wait

until time for next hand

220 PLOT 131,91: DRAW OVER 1;sx,sy:

REM rub out old hand

230 LET t1=t: GO TO 120

The in ter nal clock that this method uses should be ac cu rate to about .01% as long as the
com puter is just run ning its pro gram, or 10 sec onds per day; but it stops tem po rarily
when ever you do BEEP, or a stor age de vice op er a tion, or use the printer or any of the
other ex tra pieces of equip ment you can use with the com puter. All these will make it lose
time.

160 ZX Spectrum Next – User Manual

Chapter 18 – Time and Motion Using POKE and PEEK at the System Variables

The num bers PEEK 23674, PEEK 23673 and PEEK 23672 are held in side the com puter
and used for count ing in 50ths1 of a sec ond. Each is be tween 0 and 255, and they grad u ally
in crease through all the num bers from 0 to 255; af ter 255 they drop straight back to 0.

The one that in creases most of ten is PEEK 23672. Ev ery 1/50 sec ond it in creases by 1.
When it is at 255, the next in crease takes it to 0, and at the same time it nudges PEEK
23673 by up to 1. When (ev ery 256/50 sec onds) PEEK 23673 is nudged from 255 to 0, it in
turn nudges PEEK 23674 up by 1. This should be enough to ex plain why the ex pres sion
above works.

Now, con sider care fully: sup pose our three num bers are 0 (for PEEK 23674). 255 (for
PEEK 23673) and 255 (for PEEK 23672). This means that it is about 21 min utes af ter
switch-on – our ex pres sion ought to yield:

(65536 * 0 + 256 * 255 + 255)/50=1310.7

But there is a hid den dan ger. The next time there is a 1/50 sec ond count, the three num bers
will change to 1,0 and 0. Ev ery so of ten, this will hap pen when you are half way through
eval u at ing the ex pres sion: the com puter would eval u ate PEEK 23674 as 0, but then
change the other two to 0 be fore it can PEEK them. The an swer would then be:

(65536*0 + 256*0 + 0)/50 = 0

which is hope lessly wrong.

A sim ple rule to avoid this prob lem is eval u ate the ex pres sion twice in suc ces sion and take
the larger an swer.

If you look care fully at the pro gram above you can see that it does this im plic itly. Here is a
trick to ap ply the rule.

De fine func tions:

10 DEF FN m(x,y)=(x+y+ABS(x-y)) /2:

REM the larger of x and y

20 DEF FN u()=(65536*PEEK 23674+256*

PEEK 23673+PEEK 23672)/50: REM

time, may be wrong

30 DEF FN t()=FN m(FN u(), FN u()):

REM time, right

You can change the three coun ter num bers so that they give the real time in stead of the
time since the com puter was switched on. For in stance, to set the time at 10:00am, you
work out that this is 10*60*60*50= 180000 fif ti eths of a sec ond and that:

1800000 = 65536 * 27 + 256 * 119 + 64

To set the three num bers to 27, 119 and 64, you have to:

POKE 23674,27: POKE 23673,119:

POKE 23672,64

If you have cho sen to run your ZX Spec trum Next in 60Hz mode then these pro grams must
re place 50 by 60 where ap pro pri ate.

Retrieving information from the RTC

If your ZX Spec trum Next has the op tional DS1307 Real Time Clock (RTC) op tion in stalled
or you have in stalled it your selves (See Chap ter 22 for de tails), then you're able to use a
more ac cu rate way of re triev ing timekeeping data; one that does n't in volve any cal cu la -
tions as de scribed above; nor one that can be af fected by clock speed changes.

ZX Spectrum Next – User Manual 161

Retrieving information from the RTC Chapter 18 – Time and Motion

1 60ths of a second if we're using a 60 Hz display.

The way to re trieve time (or date) in for ma tion from the RTC is not very straight for ward own -
ing to the fact that it's trig gered via a dot com mand. For that we need to use the NextZXOS
fa cil i ties of Chan nels and Streams (which we will ex plore in Chap ter 21) and spe cif i cally,
Chan nel v (which opens a stream to a fixed sized vari able t$)

DIM t$(100):OPEN #2,"v>t$":.TIME

:CLOSE #2:PRINT t$

then by string slic ing t$ as seen in depth in Chap ter 8, we can ex tract the in for ma tion we
need to use .time (or .date) in our pro grams.

INKEY$

The func tion INKEY$ (which has no ar gu ment) reads the key board. If you are press ing ex -
actly one key (or a SHIFT key and just one other key) then the re sult is the char ac ter that
that key gives in L mode; oth er wise the re sult is the empty string.

Try this pro gram, which works like a type writer:

10 IF INKEY$ <>"" THEN GO TO 10

20 IF INKEY$ = "" THEN GO TO 20

30 PRINT INKEY$;

40 GO TO 10

Here line 10 waits for you to lift your fin ger off the key board and line 20 waits for you to
press a new key.

Re mem ber that un like INPUT, INKEY$ does n’t wait for you. So you don’t type ENTER, but
on the other hand if you don’t type any thing at all then you’ve missed your chance.

INKEY$ is very use ful for a con trol loop where you can set ob jects on the screen to move
ac cord ing to which key you're press ing (for ex am ple the cur sor keys). As you will also see
from Chap ter 21, one more op tion for you is to use the NEXT #...TO key word that works in
a very sim i lar man ner. Fi nally it's also pos si ble to query the key board hard ware di rectly as
well as the op tional mouse as you will see in Chap ter 23.

Animation: a quick primer

An i ma tion is de fined as any pro cess with which static ob jects or pic tures are ma nip u lated
to ap pear as mov ing. The word it self co mes from the Latin anima which means life. In es -
sence, it is to con vey the ap pear ance of life and move ment to oth er wise static constructs.

In com put ers, this is achiev able us ing the rapid suc ces sion of im ages faster than the eye
can per ceive. On the ZX Spec trum Next spe cif i cally, there are ba si cally five meth ods of
an i ma tion; one us ing mass stor age frame play back, the other us ing mem ory based frame
play back, the third us ing sprites, the fourth us ing scroll ing and the fifth is to use a com bi na -
tion of all the above. Let's examine them in turn.

Mass Storage Frame Playback

This tech nique deals with re stor ing par tial or com plete frames of screens stored on your
SD card to or RAMdisk to the screen mem ory in rapid suc ces sion at the max i mum pos si -
ble speed. Con sider this ex am ple us ing the RAMdisk:

10 INK 5: PAPER 0: BORDER 0: CLS

 20 FOR f=1 TO 10

 30 CIRCLE f*20,150,f

 40 SAVE "m:ball"+ STR$ (f) CODE

16384,2048

 50 CLS

 60 NEXT f

162 ZX Spectrum Next – User Manual

Chapter 18 – Time and Motion INKEY$

 70 FOR f=1 TO 10

 80 LOAD "m:ball"+ STR$ (f) CODE

 90 NEXT f

100 BEEP 0.01, 0.01

110 FOR f=9 TO 2 STEP -1

120 LOAD "m:ball"+ STR$ (f) CODE

130 NEXT f

140 BEEP 0.01, 0.01

150 GO TO 70

The ex am ple above works only on Layer 0 and le ver ages the RAMdisk with out get ting into
BANK man age ment ter ri tory. It can do that be cause the frames we're sav ing are very
small. If you re mem ber from Chap ters 15 through 17 how the Layer 0 mem ory is or gan -
ised in thirds, you'll soon fig ure out that al though small it's not nec es sar ily the faster way of
doing things.

The RAMdisk is good to re play things but our SD card is also quite good. Let's try the fol -
low ing ex am ple with some thing more com pli cated based on a pro gram con trib uted by
math e ma ti cian Uwe Geiken from the NextBASIC forum.

1 REM Based on Rotating Ellipses by

Uwe Geiken © 2019

10 RUN AT 3

20 LAYER 2,1: PAPER 0: CLS

30 LET X=128: LET Y=88

40 LET A=20: LET B=0

50 LET ITER = 20: LET CURITER=0

60 FOR Q=0 TO 2* PI STEP PI /ITER

70 INK 246: LET A=30: LET B=16: LET

P=Q: PROC ellipse (X,Y,A,B,P)

80 INK 155: LET A=19: LET B= 10: LET

P=2* PI -Q: PROC ellipse

(X,Y,A,B,P)

90 IF CURITER <=ITER THEN SAVE

"ANIM"+STR$ (CURITER)+",SL2"

LAYER: LET CURITER = CURITER+1

110 PRINT AT 23,0; "Frame:";

CURITER-1;" saved";:CLS: IF

CURITER > ITER THEN GO TO 220

120 NEXT Q: GO TO 220

130 DEFPROC ellipse (X,Y,A,B,P)

140 LOCAL c,d,i,j,k,s

150 LET c= COS P: LET d= SIN P

160 FOR k= 0 TO 2.05* PI STEP PI /20

170 LET i=A* COS k: LET j=B* SIN k

180 IF k=0 THEN PLOT x+i*c-j*d,

y+i*d+j*c: GO TO 200

190 DRAW x+i+*c-j*d- PEEK 23428,

y+i*d+j*c- PEEK 23430

200 NEXT k

210 ENDPROC

 220 FOR %I = 0 TO 5

230 FOR J= 0 TO ITER

ZX Spectrum Next – User Manual 163

Mass Storage Frame Playback Chapter 18 – Time and Motion

240 LOAD "ANIM"+ STR$ (J)+".SL2"

LAYER

250 NEXT J

260 NEXT %I

360 LAYER 2,0: LAYER 0

The pro gram gen er ates el lip ses that ro tate coun ter to one an other and af ter draw ing each
frame, saves the en tire screen on the SD card. Once it's done gen er at ing (when CURITER
reaches ITER), it uses LOAD … LAYER (which we will look at in depth in Chap ter 20) to
load and dis play the Layer 2 screens the pre vi ous part gen er ated. Un like the pre vi ous ex -
am ple us ing Layer 0 which only moved 2K at a time, this loads and dis plays 48K at a time.

Com pared to the pre vi ous ex am ple us ing the RAMdisk, this ap pears much smoother and
the rea son is sim ple; there are many more frames gen er ated by the pro gram than what the
pre vi ous one did. The ques tion is can it be made smoother and if at all pos si ble, faster?

Memory Based Frame Playback

It's time to del e gate frame play back to RAM. Re place line 90 with this, lon ger, ver sion:

90 IF CURITER <=ITER THEN SAVE

"ANIM"+STR$ (CURITER)+",SL2"

LAYER: BANK 9 COPY TO

111-(CURITER*3): BANK 10 COPY TO

110-(CURITER*3): BANK 11 COPY TO

109-(CURITER*3): LET CURITER =

CURITER+1

and then add the fol low ing lines at the end:

270 PRINT AT 22,0;"Done Loading

from SD. Press any key to

load from memory"

280 PAUSE 0

290 FOR %I=0 TO 5

300 FOR %J=0 TO % INT {ITER}

310 BANK %111-(3*J) COPY TO %9

320 BANK %110-(3*J) COPY TO %10

330 BANK %109-(3*J) COPY TO

%11

340 NEXT %J

350 NEXT %I

360 LAYER 2,0: LAYER 0

Run the pro gram again and now com pare the play back us ing the SD card, with the play -
back of all the screens us ing the mem ory.

You can see that the play back is even smoother AND faster than the SD card and the rea -
son is sim ple and that is be cause mem ory is a much faster me dium than your SD card.
Now there are sev eral things of note here. First of all, this is not very ef fi cient code, mem ory
wise; Layer 2 uses 3 banks of 16K each mak ing an en tire screen 48K long. For the 20 it er a -
tions we made, that's 20 * 3 * 16K = 960K mak ing this pro gram un likely to work on a
non-ex panded ZX Spec trum Next2. Sec ondly, not the en tire screen is mov ing. Only a small
win dow does and that makes sav ing the re main der of each screen waste ful in mem ory
and speed. If we mod ify the pro gram to con fine the el lip ses in one third of the screen (ver -

164 ZX Spectrum Next – User Manual

Chapter 18 – Time and Motion Memory Based Frame Playback

2 If you modify variable ITER however to a value around 10 it will work since we already know that banks 0 to 12 are
being used by the system and 10*3*16 gives us a figure of 480K which is a memory size available on an unexpanded
Next.

ti cally speak ing), we we can only use 16K at a time mak ing the pro gram play back much
faster. This is es sen tially the same thing the first pro gram did us ing the RAMdisk. That one
how ever ap pears jerky be cause there are not enough frames of an i ma tion to make our
eyes be fooled by the illusion of smooth movement.

We can do that us ing BANK LAYER which is used to quickly copy data from a mem ory
bank to the screen or vice versa. The syn tax is as fol lows:

BANK n LAYER x,y,w,h|off set TO [ras ter_op] off set|x,y,w,h

which can copy any rect an gu lar “win dow” of the cur rent layer de fined by x,y,w and h into a
mem ory bank and back. BANK LAYER also sup ports ef fects de fined by ras ter_op which
can fur ther en hance the dis play of the “win dow” you're copy ing mak ing an i ma tion tran si -
tions even more in ter est ing. More in for ma tion re gard ing BANK … LAYER can be found in
Chap ter 24 – The Mem ory.

Animation with the Sprite System

The third way of an i mat ing things in NextBASIC is via the use of the Sprite Sys tem. Sprites
are vi sual ob jects of a rect an gu lar shape that can be placed any where in the screen and
an i mated by mov ing them about but also per form an i ma tion within the ob ject by rap idly
re plac ing the ob ject's bitmap (the im age –or pat tern– it dis plays). There are two kinds of
sprites on the ZX Spec trum Next, 8-bit and 4-bit. The first can dis play 256 colours at once
while the second 16.

There is a max i mum of 64 sprites in 8-bit mode and 128 in 4-bit mode. NextBASIC only
sup ports the 8-bit mode sprites so we'll only dis cuss these. For more in for ma tion re gard -
ing the use of 4-bit sprites, re fer to Chap ter 23 and on line at specnext.com. In for ma tion on
4-bit sprites is also in cluded in the sec ond vol ume of this manual.

Sprites are 16 x 16 pix els in size and can be mir rored and ro tated. They can also be an -
chored to gether to make a big ger sprite (al though this last fea ture, is not sup ported in
NextBASIC).

The Sprite Sys tem has it's own RAM, lo cated in side the FPGA that's at the core of the com -
puter, which not ac ces si ble from the out side via stan dard PEEK and POKE; one can only
write to it via REG com mands and the spe cial sprite ports (See Chap ter 23 for de tails), so
we need to keep a copy of our sprites in mem ory if we want to mod ify and send them to be
dis played anew.

Creating Sprites

Sprites are cre ated very sim i lar to the way UDGs are cre ated as we saw in Chap ter 14.

There are three ma jor differeces how ever:

• UDGs are 1-bit only while sprites (for NextBASIC) are 8-bit

• UDGs are 8 x 8 while sprites are 16 x 16 pixels

• UDGs are manipulated within the main memory map while sprites need to be
stored in a bank in order to be used.

The sim i lar i ties how ever are ob vi ous. Sprites can be eas ily made with DATA state ments
which –if us ing one of the wider dis play modes– can even be seen vi su ally via the
numbers.

So where for a UDG you wrote 8 DATA state ments of 8 bits each, for a sprite you write 16
DATA state ments of 16 bytes each; the same es sen tial thing but scaled up.

ZX Spectrum Next – User Manual 165

Animation with the Sprite System Chapter 18 – Time and Motion

This is best dem on strated vi su ally so, let's try to im ple ment the fol low ing sprite via DATA
state ments:

Since colours in the fig ure above are only vis i ble if you have the col our edi tion of the User
Man ual, let's de scribe the larger area about the sprite and that's the trans par ency part.

This is set to in dex 227 (as we've seen in Chap ter 16), the Global Trans par ency Col our –
which for the pur poses of our ex am ple has been left the de fault. The rest dis plays a lit tle
space ship in brown and grey while the cock pit is dem on strated in blue and white.

Let's start with the DATA state ments. Some line num bers are omit ted as we'll be add ing
them in the course of our an i ma tion ex am ple

10 ; Sprite: Romylos Dokos © 2019

30 RESTORE

40 BANK NEW a

50 FOR F=0 TO 255

60 READ n: BANK a POKE f,n

70 NEXT f

80 SAVE "spaceship.spr" BANK a,0,256

210 REM Sprite Pattern 0

220 DATA 68, 68, 68, 68, 227, 227,

227, 227, 227, 227, 227, 227, 68,

68, 68, 68

230 DATA 68, 182, 219, 68, 227, 227,

227, 68, 68, 227, 227, 227, 68,

219, 182, 68

240 DATA 68, 68, 68, 68, 227, 227,

227, 55, 55, 227, 227, 227, 68,

68, 68, 68

250 DATA 182, 182, 68, 227, 227,

227, 227, 55, 55, 227, 227, 227,

227, 68, 182, 182

260 DATA 68, 68, 68, 227, 227, 227,

68, 68, 68, 68, 227, 227, 227,

68, 68, 68

270 DATA 240, 68, 68, 227, 227, 227,

68, 255, 127, 68, 227, 227, 227,

68, 68, 240

280 DATA 227, 68, 68, 0, 227, 227,

68, 127, 127, 68, 227, 227, 0,

68, 68, 227

166 ZX Spectrum Next – User Manual

Chapter 18 – Time and Motion Creating Sprites

Figure 23 – A sprite

290 DATA 227, 182, 219, 72, 0, 227,

182, 0, 68, 68, 227, 0, 72, 219,

182, 227

300 DATA 227, 182, 219, 72, 182, 0,

0, 0, 68, 182, 227, 182, 72, 219,

182, 227

310 DATA 227, 182, 219, 72, 182, 68,

68, 0, 68, 68, 68, 182, 72, 219,

182, 227

320 DATA 227, 240, 68, 72, 182, 68,

68, 0, 68, 68, 68, 182, 72, 68,

240, 227

330 DATA 227, 227, 227, 72, 182, 68,

255, 182, 182, 255, 68, 182, 72,

227, 227, 227

340 DATA 227, 227, 227, 227, 68, 68,

255, 68, 68, 255, 68, 68, 227,

227, 227, 227

350 DATA 227, 227, 227, 227, 227, 68,

255, 182, 182, 255, 68, 227, 227,

227, 227, 227

360 DATA 227, 227, 227, 227, 227,

227, 236, 224, 236, 224, 227,

227, 227, 227, 227, 227

370 DATA 227, 227, 227, 227, 227,

227, 227, 252, 252, 227, 227,

227, 227, 227, 227, 227

If you use the 64 or 85 col umn modes (Via the Edit/Op tions menu) you'll be able to dis cern
the pat tern in a sim i lar man ner as you did for the UDGs in Chap ter 14. Value 227 is ob vi -
ously the trans par ency as we dis cussed above.

Line 40 is a new com mand for us (which we will ex am ine in length in Chap ter 24) but what it
does, is to re serve the first free mem ory bank and as sign its iden ti fi ca tion num ber to vari -
able a. This way we don't need to re mem ber –or hard code– an ar bi trary num ber as that
num ber could be in use if this is loaded on another machine.

Next, line 60 reads each value in suc ces sion and then writes (with BANK POKE) each
value in a pro gres sively in creas ing off set in bank a. Once the READ pro cess is done, we
SAVE the stored val ues in a file for later use. This par tic u lar ver sion of SAVE (SAVE ...
BANK) will be ex plained in length in chap ters 20 and 24.

Putting Sprites on Screen

The sprite (or rather a pat tern that can be as signed to a sprite) is now safely stored in bank
a. So how do we dis play it?

For that we need a few com mands. SPRITE CLEAR, SPRITE BANK, SPRITE PRINT,
SPRITE BORDER and fi nally SPRITE.

Let's fol low them one by one:

SPRITE CLEAR

clears all sprite as sign ments and starts fresh. It's a good idea to start any pro gram deal ing
with sprites with that com mand so let's in sert it into our pro gram im me di ately with:

20 SPRITE CLEAR

ZX Spectrum Next – User Manual 167

Putting Sprites on Screen Chapter 18 – Time and Motion

We now have let NextBASIC know that we have no sprites as signed with the pre vi ous
com mand, but now we need to as sign new ones. This is done with:

SPRITE BANK b [,o, p, n]

which lets NextBASIC know in which bank b, are the sprite pat terns lo cated. Op tion ally you
can de fine a num ber n of sprite pat terns be gin ning with pat tern p, lo cated at bank off set o.

In the case above, we al ready know the bank and we do not need any more iden ti fi ca tion
fac tors so let's tell NextBASIC where we put the sprites by add ing:

90 SPRITE BANK a

All is now left to do, is show our sprite. For this we need two com mands. First we need to
en able sprites with:

SPRITE PRINT n

where n can be 0 or 1 en ables sprites (1) or dis ables (0) them. This is ac tu ally show ing the
sprites, but freshly in itial ised sprites con tain no im age (pat tern), nor dis play in for ma tion.
We need to as sign at least one pat tern to one sprite “slot” and tell the Sprite Sys tem that
the par tic u lar sprite “slot” is vis i ble for that to happen.

In our ex am ple so far (that will soon change), we only have one pat tern so that's not par tic -
u larly dif fi cult. We also need to place the sprite some where on the screen AND pos si bly
ro tate it. If you go back to our sprite de sign, you'll see it's a space ship fac ing up wards; we
may need to make it turn to the left or right. All of the above (and one more thing) can be
achieved with a sin gle command:

SPRITE s, x, y , p, f

which in one go: sets sprite num ber s, to pat tern num ber p, then up date its po si tion to lo -
ca tion x, y with flags f. Flags is a bitmask (we've cov ered bitmasks be fore in Chap ter 7 so
that should be easy al ready) that sets the following:

Bit 0 is the vis i bil ity flag. 0 is for in vis i ble and 1 is for vis i ble
Bit 1 is the ro tate flag. 0 for stan dard, 1 for a 90o clock wise ro ta tion
Bit 2 is the Y–mir ror flag. 0 is for non-mir rored ver ti cally while 1 is for mir rored
Bit 3 is the X-mir ror flag. Again it's 0 for non-mir rored hor i zon tally while 1 is for mirrored

while

Bits 4 through 7 de fine a 4-bit pal ette off set (or 0). We'll ex plain in a lit tle bit the part about
the pal ette off set (and pro vide ex am ples for the rest of the flags) but for now, let's add a
non-mir rored, non-ro tated sprite 0 with the pat tern 0 we de fined, put it at ap prox i mately
the cen tre of our screen and make it vis i ble. Let's add the ap pro pri ate com mands now to
our program:

100 SPRITE PRINT 1

130 SPRITE 0,152,119,0,1

to make sure that our sprite will stay on screen (as the NextBASIC ed i tor will make it in vis i -
ble tem po rarily when in voked), we should add one more line:

150 PAUSE 0

which will en sure the com puter is wait ing on our keypress be fore re turn ing to NextBASIC.
Now RUN the pro gram.

Presto! Our Space ship is sit ting idle, do ing noth ing, in the mid dle of our screen. But wait a
sec ond? 152 and 119 don't look any where like the mid dle of the screen. We know our res -
o lu tion in Layer 0 can be ex pressed in val ues be tween 0 and 255 for x and 0 and 191 for y
cor rect? Well wrong! It's time now to re fer back to Chap ter 16 and also ex am ine Fig. 21 one
more time where we will see that the Sprite Sys tem has a res o lu tion of 320 w x 256 h pixels.

168 ZX Spectrum Next – User Manual

Chapter 18 – Time and Motion Putting Sprites on Screen

This gives us 32 more pix els on ev ery side than our stan dard res o lu tion Layer 0 and Layer 2
screens. Now place ment of the sprite be gins with the up per left cor ner and a sprite is 16 x
16 so in or der to be placed at the cen tre of the screen you di vide the hor i zon tal and ver ti cal
in half and then sub tract a fur ther 8 pix els to cen ter the sprite. Nor mally the bor der hides
the sprites so set ting an x,y set of 0,0 would leave the sprite in vis i ble. There is some thing
we can do about that however and that's use:

SPRITE BORDER n

which sets the sprites to print over the bor der if n is set to 1 or un der it if n is set to 0. Let's
try it by add ing the com mand and chang ing line 140 to show the sprite at that co or di nate
with:

105 SPRITE BORDER 1

130 SPRITE 0,0,0,0,1

To ex e cute with the lat est changes, do not RUN the pro gram again, as this will re peat the
pro cess and com mit one more bank to the sprite DATA we en tered orig i nally. In stead type
GO TO 100. You may even want to test this with out line 105 to see the dif fer ence.

Animating Sprites

This chap ter how ever is called Time and Mo tion and with sprites so far we have n't seen
mo tion at all! Well, let's change that; as we spoke in the in tro duc tion a sprite can be an i -
mated by mov ing it about the screen or by chang ing its bitmap to some thing dif fer ent and
most of the time, both at the same time. In or der how ever to an i mate the bitmap of a sprite,
a new pat tern has to be de fined. Let's do that by add ing a few lines to our pro gram and
mod i fy ing some ex ist ing ones. First re move lines 140 and 150, then modify these:

50 FOR F=0 TO 511

80 SAVE "spaceship.spr" BANK a,0,512

and then add these:

106 FOR %a= 1 TO 50

139 LET %s=1-s

140 SPRITE 0,152,119,%s,1

145 NEXT %a

150 PAUSE 0:STOP:REM Exit here after

pausing

380 REM Sprite Pattern 1

390 DATA 68, 68, 68, 68, 227, 227,

227, 227, 227, 227, 227, 227, 68,

68, 68, 68

400 DATA 68, 219, 182, 68, 227, 227,

227, 68, 68, 227, 227, 227, 68,

182, 219, 68

410 DATA 68, 68, 68, 68, 227, 227,

227, 55, 55, 227, 227, 227, 68,

68, 68, 68

420 DATA 182, 182, 68, 227, 227, 227,

227, 55, 55, 227, 227, 227, 227,

68, 182, 182

430 DATA 68, 68, 68, 227, 227, 227,

68, 68, 68, 68, 227, 227, 227,

68, 68, 68

ZX Spectrum Next – User Manual 169

Animating Sprites Chapter 18 – Time and Motion

440 DATA 240, 68, 68, 227, 227, 227,

68, 255, 127, 68, 227, 227, 227,

68, 68, 240

450 DATA 227, 68, 68, 0, 227, 227,

68, 127, 127, 68, 227, 227, 0,

68, 68, 227

460 DATA 227, 182, 219, 72, 0, 227,

182, 0, 68, 68, 227, 0, 72, 219,

182, 227

470 DATA 227, 182, 219, 72, 182, 0,

0, 0, 68, 182, 227, 182, 72, 219,

182, 227

480 DATA 227, 182, 219, 72, 182, 68,

68, 0, 68, 68, 68, 182, 72, 219,

182, 227

490 DATA 227, 240, 68, 72, 182, 68,

68, 0, 68, 68, 68, 182, 72, 68,

240, 227

500 DATA 227, 227, 227, 72, 182, 68,

255, 182, 182, 255, 68, 182, 72,

227, 227, 227

510 DATA 227, 227, 227, 227, 68, 68,

255, 68, 68, 255, 68, 68, 227,

227, 227, 227

520 DATA 227, 227, 227, 227, 227, 68,

255, 182, 182, 255, 68, 227, 227,

227, 227, 227

530 DATA 227, 227, 227, 227, 227,

227, 236, 224, 236, 224, 227,

227, 227, 227, 227, 227

540 DATA 227, 227, 227, 227, 227,

227, 227, 224, 224, 227, 227,

227, 227, 227, 227, 227

Now, un like the pre vi ous en cour age ment, RUN the pro gram again. This will re serve a new
bank for sprites which is n't nor mally rec om mended but it is okay for the pur poses of our
ex am ple. What we have done now is to cre ate two pat terns that are sim i lar but dif fer
slightly in the can nons sec tion and the en gine sec tion. Lines 136 to 150 will dis play sprite
0, 50 succesive times, how ever where things dif fer is at line 137 which “flips a switch” from
pat tern 0 to pat tern 1 for sprite 0 dis played at line 140. If you can not see the ef fect very
well, you can insert a:

PAUSE 3

at the end of line 140 which should give you just about enough de lay to see the sprite
chang ing at the en gine and can non sec tions while at the same time dem on strat ing how
im por tant time con trol is in an i ma tion. We did cover the bitmap an i ma tion of the sprite it -
self; let's now see how we can make it move. First how ever let's try to ro tate the sprite in
place so we can also see the us age of the flags in ac tion. Add the following lines:

107 LET %p=0

108 REPEAT

109 IF %p=0 THEN LET %f=%@0001

110 IF %p=1 THEN LET %f=%@0011

170 ZX Spectrum Next – User Manual

Chapter 18 – Time and Motion Animating Sprites

111 IF %p=2 THEN LET %f=%@0101

112 IF %p=3 THEN LET %f=%@1011

141 REPEAT UNTIL %p >3

and make line 140:

140 SPRITE 0,152,119,%s,%f:PAUSE 3:

LET %p=%p+1

Now ex e cute again with GO TO 100 and you will see the sprite ro tate in place.

The pro cess is quite sim ple; the last bit be ing the vis i bil ity flag:

First the sprite is printed up right, then the ro ta tion flag bit gets turned on to give it a right an -
gle turn, then it gets turned off and the Y mir ror flag bit gets turned on to make the sprite
point down wards and fi nally the ro ta tion flag bit to gether with the X mir ror flag bit get turn on
to ro tate the sprite clock wise 90o and then mir rored hor i zon tally to make the sprite point ing
to the left. The pro cess re starts from the sprite point ing up wards when the ro ta tion vari able
%p gets re set to 0 and the whole thing re peats 50 times, all the while chang ing be tween
pat terns 0 and 1.

Moving Sprites on Screen

Time to move the sprite about the screen; we'll start easy and then in tro duce you to the
real rea son (that is ob vi ously humourus) why maths ex ist! First re move all lines be tween
106 and 150 and re place with these:

106 FOR %a = 0 TO 255

130 LET %s=%1-s

140 SPRITE 0,152, %255-a,%s,1

141 PAUSE 3

145 NEXT %a

150 GO TO 106: REM you'll need to

stop this with BREAK

Ex e cute with GO TO 100 and you'll see our space ship fire up its en gines and cross the
screen from top to bot tom. Now for some thing much fan cier as prom ised, move line 106
to 120 and add these lines:

106 PROC initSXSineMov()

560 STOP

570 DEFPROC initXSineMov()

580 FOR f =0 TO 319: LET %a[INT

{f}]=% INT { 159* SIN (f/159* PI

)}: NEXT f

590 ENDPROC

Fi nally mod ify lines 140 and 150 as fol lows:

140 SPRITE 0,%159+a[a], %255-a, %s,1

150 GO TO 120

be fore ex e cut ing again with GO TO 100. The space ship now will move in a si nu soi dal pat -
tern from the bot tom to the top of the screen be fore wrap ping around and com ing from the
bot tom. The way we did this, was by pre cal cu lat ing an in te ger ar ray (See Chap ter 12) to
hold all pos si ble x val ues within our vis i ble Sprite Sys tem co or di nates. To avoid B In te ger
out of range er rors, we made sure the pos si ble val ues of both the SIN func tion re sults and
line 140 that po si tions the space ship in the x,y axis stay within ac cept able range. To switch
the ini tial di rec tion of move ment, in stead of a + you can start with a - in line 140 as follows:

ZX Spectrum Next – User Manual 171

Moving Sprites on Screen Chapter 18 – Time and Motion

140 SPRITE 0,%159-a[a], %255-a, %s,1

Note that our in te ger ar ray %a is us ing the brack ets [] vari ant in stead of the pa ren the ses ()
vari ant and that's be cause we have more than a po ten tial 64 val ues. That means also that
in te ger ar rays %a (), %b (), %c (), %d () and %e () have been used up by %a[].

It's ob vi ous by this ex am ple that very com plex an i ma tion pat terns can be cre ated with rel a -
tive ease us ing the Sprite Sys tem. Be fore we move on to scroll ing, it's use ful to also cover
a cou ple of sub jects we did not ad dress in the course of our example.

The first thing is the abil ity to use pal ettes with the Sprite Sys tem. These are in dis tin guish -
able from other pal ettes in the ZX Spec trum Next pal ette con trol sys tem3 and they too are
also gov erned by the PALETTE DIM key word to set them up as 8 or 9 bit. Like the LAYER
PALETTE equiv a lent, the Sprite Sys tem has its own key word com bi na tions: SPRITE
PALETTE and SPRITE PALETTE BANK. Their syn tax is as follows:

SPRITE PALETTE n[,i,v]

where n is the pal ette num ber (0 for first and 1 for sec ond) while the op tional i, v are the col -
our in dex (0 to 255) and col our value (ex pressed in 9-bit RRRGGGBBB for mat re gard less
of the PALETTE DIM set ting).

SPRITE PALETTE n BANK b, o

will op er ate like it's LAYER coun ter part, as sign ing pal ette n from off set o in bank b. As with
the LAYER ver sion, pal ettes are 512 bytes long if 9-bit and 256 bytes long if 8-bit (as set
with PALETTE DIM).

One last thing of note is the pal ette off set flag we dis cussed ear lier. This is there to al low
for quick change of col our scheme on a sprite with out chang ing its bitmap. If you re call the
dis cus sion about 4-bit sprites, this is sim i lar but the sprites are ac tu ally 8-bit ones. They
can still be de fined in 8 bit in dex val ues how ever these val ues' 4 top bits will get chopped
off and re placed by the op tional off set. Since cal cu lat ing and/or an tic i pat ing and prop erly
struc tur ing your pal ettes for such a use can be a large has sle; it's good prac tice if you want
to use this fea ture to de fine your sprite val ues from 0 to 15 and set the off set to ad ja cent
sets of 16 colours. This way in a po ten tial fu ture ver sion of NextBASIC that sup ports na tive
4-bit sprites, you won't have to change pattern definitions at all.

Scrolling

The last method of an i ma tion is by us ing the in-built hard ware scroll ing ca pa bil i ties of the
ZX Spec trum Next. As you will find out in Chap ter 23, all lay ers can be scrolled ei ther in full
or within a clip ping win dow (see Chap ter 17 – Graphics). NextBASIC pro vides ac cess to
hard ware scroll ing via the LAYER AT com mand. Its syn tax is as follows:

LAYER AT x,y

which moves the cur rent layer to the off set de fined by the co or di nates x and y. Ac cord ing
to which side we're mov ing to, the ex ist ing graphics on that side get wrapped around the
op po site side. Let's dem on strate us ing one of the graphic de mos' im ages in side the Sys -
tem/Next™ distribution SD:

10 LAYER 2,1:CLS

172 ZX Spectrum Next – User Manual

Chapter 18 – Time and Motion Scrolling

SPRITES cannot be saved as parts of any screenshot facility with the NMI menu or
via SAVE … LAYER because they exists outside of normal memory space.

3 See Chapter 16 for the Layer 2 notable palette exception

20 .bmpload /demos/bmp256conve

rts/bitmaps/term.bmp: PAUSE

 0: REM Hasta la vista Kev!

30 FOR %x=0 to 255

40 LAYER AT %x,%0

50 NEXT %x

60 LAYER AT 0,0: LAYER 2,0:LAYER 0

Once you RUN the above, you'll see an im age rac ing to wards the left side of the screen so
fast it may even be un us able for any thing other than a sim ple ef fect. Run ning it at 3.5MHz
you will see a very smooth move ment which shows how ef fi cient hard ware scroll ing is on
the ZX Spec trum Next.

If you want to re verse the ef fect and make the screen move to wards the right you will need
to change line 40 to:

40 LAYER AT %255-x,0

If we bor row a bit from the sprite ex am ple, we can even in tro duce a SIN func tion to make
the screen ap pear like it's bounc ing from left to right and top to bot tom and vice-versa.

By it self, the LAYER AT key word does n't do much other than roll a screen around; with the
com bi na tion how ever of layer clip ping win dows and back ground up dat ing of the shadow
screens (See Chap ters 23 and 24 as well as Chap ter 17), you can pro duce a scroll ing ef -
fect of very large land scapes. If you com bine this with spe cially crafted screens that can
re peat them selves at in fi ni tum then you have the ba sics for ev ery side scrolling game ever
made!

The Copper

While not strictly an an i ma tion aid, the Cop per is a hard ware mod ule of the ZX Spec trum
Next that can def i nitely be used for, among other things, an i ma tion. The Cop per runs in
par al lel and in de pend ently from the main Z80n pro ces sor and is ded i cated to writ ing Next
Reg is ters (NexREG) at spe cific points on the dis play. The name de rives from “co-pro ces -
sor” and was first seen in the Amiga com puter which had a sim i lar func tion. The Cop per,
es sen tially main tains a list of in struc tions that con sists of only two com mands; WAIT and
MOVE. This sim ple con trol al lows up dat ing of Next reg is ters at reg u lar times, syn chro -
nised to points when the dis play is up dated on the screen. The Cop per sys tem can there -
fore be used to send au dio sam ples to the ZX Spec trum Next's dig i tal au dio hard ware,
make fast col our changes to get sky ef fects, change layer pri or i ties, en able or disable
screen modes etc. all that from a simple list of commands.

On older Spec trum mod els, you would have needed some very clever use of the In ter rupt
sys tem to do these sort of tricks with some be ing com pletely im pos si ble or just too slow to
be of any prac ti cal use. Even with the ZX Spec trum Next's abil ity to gen er ate in ter rupts on
each ras ter line, set ting that up (es pe cially in NextBASIC) and then try ing to get the tim ing
right for nice clean ef fects is very com pli cated (or im pos si ble) and yet sim ple to ac com -
plish by using the Copper.

We'll jump ahead a bit and in tro duce a spe cial com mand; REG (which will be cov ered in
full in Chap ter 23). For now take REG n,v to be the same as OUT 9275, n: OUT 9531,v.
Let's see our ex am ple:

10 BORDER 0: PAPER 0: INK 7:CLS

20 REG 98,0: REM make sure Copper is

stopped

30 REG 97,0

40 REM Select the Copper data

register

ZX Spectrum Next – User Manual 173

The Copper Chapter 18 – Time and Motion

50 FOR x=0 TO 6: REM Increase this

if you add more data lines.

60 READ m,l

70 REG 96,m: REG 96,l: REM write the

Copper list from DATA statements

80 NEXT x

90 REG 97,0: REM low part of address

100 REG 98,%@11000000: REM high part

of address and start Copper,

repeat on VBlank

1000 DATA 128+(45*2),0:

REM WAIT for line zero horizontal

45

1010 DATA 64,16,65,BIN 11100000:

REM WRITE Palette Index 16 (Paper

and Border), then WRITE RED

1020 DATA 128+(45*2),100:

REM WAIT for line 100 horizontal

45

1030 DATA 64,16,65,BIN 00000000:

REM WRITE Palette Index 16 and

WRITE contents back to BLACK.

1040 DATA 128+1,128

1050 REM Last line waits for a bit of

the screen that does not exist

1*256+128 = 386 (STOP)

You can try chang ing the BIN state ments in lines 1010 and 1030 to use dif fer ent colours –
this is the 8 bit Pal ette value so RRRGGGBB

Now re mem ber this list is still run ning in the back ground but, it is chang ing ULA pal ette 0
pa per col our. NextZXOS uses pal ette 1 so you do not see it when ed it ing NextBASIC. Just
type CLS and you will see that it co mes back un til you press a key!

WAIT com mands (where the top bit is 1 i.e. bytes >128) will pause pro cess ing un til a cer -
tain point on the dis play (to a fixed res o lu tion).

MOVE com mands (where the top bit is 0 i.e. bytes <128) will take a given value and put it
in the num bered reg is ter.

You can have up to 1024 com mands which can re peat or stop at any point by WAIT ing for
a non ex is tent line I.e. >311 which works at both 50 and 60 Hz. So there is loads of room
for cre ativ ity and in ven tion.

Only the lower 128 Next reg is ters can be writ ten but, this is not an is sue as the reg is ters
above 127 are mainly used for the ac cel er a tor and the Ex pan sion Bus.

Reg is ter 96 (60h) is the data port to write the in struc tions. They are two bytes long so you
need to write them in pairs with the most sig nif i cant byte first – not the usual Z80 way but,
needed for the way the sys tem works.

Reg is ter 97 and 98 (61h and 62h) are the con trols; the first is the low 8 bi nary bits of the ad -
dress to WRITE the in struc tions, the sec ond con tains the bits to con trol the mode and the
top bits of the in struc tion ad dress. If you change to mode 01b (from an other mode like
00b PAUSE/STOP) this also re sets where the Cop per be gins to READ its in struc tions from
back to in struc tion 0 – in all other cases it will carry on from where it left off last time.

174 ZX Spectrum Next – User Manual

Chapter 18 – Time and Motion The Copper

The Cop per sees the screen start ing from the top left pixel of the dis play area of the
screen, this is 0,0. Af ter 32 hor i zon tal val ues (ev ery 8 pix els) you have the right bor der, then
you have a gap (count of 12) which is where, on an old TV, the spot would be fly ing back
over to the left, then you have the right hand bor der of the next hor i zon tal line.

Note: This zero point is also where the screen “dot” will be when the first Ras ter Line In ter -
rupt oc curs. Do not con fuse this with nor mal in ter rupts on the sys tem which oc cur in the
top left of the whole screen as it is dis played on a mon i tor or TV. That is ac tu ally some -
where in the mid dle of the bot tom right of the Cop per view of the screen shown in the di a -
gram be low. Ex actly at ras ter line 224 at 60Hz or 248 at 50Hz.

Fi nally when it gets to the bot tom of the screen it has the bor der and then a blank pe riod (8
lines) while the old spot was run ning back to the top of the screen, then you have a num ber
of lines in the top of the screen area to play with (56 at 50Hz or 32 at 60Hz). To see this
change line 1000 for DATA 128+(45*2),200 and line 1020 for DATA 128+(45*2)+1,45.
Re mem ber: 1*256+45 = 301.

This di a gram will hope fully help to visu al ise that:

If you MOVE 0,0 (i.e. Write some thing to a Read Only Next Reg is ter like Reg is ter 0) then
the Cop per does noth ing for a short du ra tion (a NOP in Z80 terms) so you can wait for a
more ac cu rate mo ment to over come the fact you only have 55 hor i zon tal po si tions to wait
for i.e. ev ery 8 pix els on the screen.

You can write to the Cop per as it is run ning be cause it keeps a sep a rate track of its READ
in struc tion ad dress to the ad dress you are us ing to WRITE.

WARNINGS:

Be care ful as the NextZXOS Screensaver uses what ever pal ette is in place so if you have
any bor der ef fects run ning they will still be vis i ble and could cause the screen to burn. This
is worth bear ing in mind if you are writ ing soft ware not to leave static im ages around too
long!

If you try to write to a Next Reg is ter at the same time as the Cop per then this might cause a
con flict – don't worry; the Cop per will win and the dis play will be OK but, your pro gram
com mand may fail.

So some care is needed to man age the two sys tems. Turn ing off the Cop per while you
make Next Reg is ter af fect ing changes in NextBASIC is a good idea. That in cludes things

ZX Spectrum Next – User Manual 175

The Copper Chapter 18 – Time and Motion

Figure 24 – Copper operation

like the PALETTE com mand for ex am ple. If you are us ing ma chine code you will need to
use some form of flag and re mem ber what the Cop per might be do ing at a specific time.

In the above pro gram for ex am ple, it is pos si ble the Cop per STOP in the first two lines will
fail if you run it a sec ond or third time to change the col our and will not re set the write ad -
dress, so you will write af ter the list al ready there and your new one will never be reached.
You could get around that by re peat ing the first two lines as it is un likely to fail twice so
shortly af ter the last at tempt and has no ef fect if it does run twice.

Exercises

1. Write a pro ce dure to write a STOP com mand twice in a row so that you can
make sure the Cop per is stopped when you need to in your pro grams.

2. Draw a Spec trum Flash on the right hand side bor der by chang ing the pal ette
col our five times – make sure the last time is back to your real pa per/bor der col -
our. Hint you can use one or more WRITE 0,0 as a very short delay.

3. Write a pro gram that con trols two space ships us ing the sprite de fined, one go -
ing hor i zon tally, while the other ver ti cally on the screen

4. En hance the above pro gram with a mem ory based Layer 2 an i ma tion run ning in
the back ground

176 ZX Spectrum Next – User Manual

Chapter 18 – Time and Motion The Copper

Sound and Music

This page intentionally left blank

Sound and Music

Un like its pre de ces sors, your ZX Spec trum Next does n’t fare poorly in the au dio ca pa bil i -
ties de part ment. From sim ple beeps and clicks, to com plex com po si tions us ing its in-built
3 Pro gram ma ble Sound Gen er a tors (PSGs) and full-fledged dig i tal au dio out put, sound
can ac com pany al most ev ery pro gram you write or soft ware you will load. Sound is out put
in ste reo from both the dig i tal video port and an an a logue 3.5mm jack out put pres ent on
the back of the ma chine. Ad di tion ally, there is the pos si bil ity of an on-board piezo speaker
(sold separately).

Basic sounds with the BEEP command

The eas i est way to cre ate sounds (and the only method that works on all ZX BASIC ver -
sions in clud ing NextBASIC) is by us ing the BEEP state ment:

BEEP du ra tion, pitch

where, as usual, du ra tion and pitch rep re sent any nu mer i cal ex pres sions. The du ra tion is
given in sec onds, and the pitch is given in semi tones above mid dle C. For notes be low
mid dle C we use neg a tive numbers.

Here is a di a gram to show the pitch val ues of all the notes in one oc tave on the pi ano:

To get higher or lower notes, you have to add or sub tract 12 for each oc tave that you go up
or down.

If you have a pi ano in front of you when you are pro gram ming a tune, this di a gram will
prob a bly be all that you need to work out the pitch val ues. If, how ever, you are tran scrib ing
straight from some writ ten mu sic, then we sug gest that you draw a di a gram of the stave
with the pitch value writ ten against each line and space, tak ing the key into account.

For ex am ple, type:

10 PRINT "Frere Gustav"
20 BEEP 1,0: BEEP 1,2: BEEP .5,3: BEEP
 .5,2: BEEP 1,0
30 BEEP 1,0: BEEP 1,2: BEEP .5,3: BEEP
 .5,2: BEEP 1,0
40 BEEP 1,3: BEEP 1,5: BEEP 2,7
50 BEEP 1,3: BEEP 1,5: BEEP 2,7
60 BEEP .75,7: BEEP .25,8: BEEP .5,7:
 BEEP .5,5: BEEP .5,3: BEEP .5,2: BEEP
 1,0
70 BEEP .75,7: BEEP .25,8: BEEP .5,7:

ZX Spectrum Next – User Manual 179

Basic sounds with the BEEP command Chapter 19 – Sound and Music

Fig. 25 – Pitch/note equivalents

 BEEP .5,5: BEEP .5,3: BEEP .5,2:
 BEEP 1,0
80 BEEP 1,0: BEEP 1,-5: BEEP 2,0
90 BEEP 1,0: BEEP 1,-5: BEEP 2,0

When you run this, you should get the fu neral march from Mahler’s first sym phony, the bit
where the gob lins bury the US Cav alry man.

Sup pose for ex am ple that your tune is writ ten in the key of C mi nor, like the Mahler above.
The be gin ning looks like this:

 and you can write in the pitch val ues of the notes like this:

We have put in two led ger lines, just for good mea sure. Note how the E flat in the key sig -
na ture af fects not only the E in the top space, flat ten ing it from 16 to 15, but also the E on
the bot tom line, flat ten ing it from 4 to 3. It should now be quite easy to find the pitch value
of any note on the stave.

If you want to change the key of the piece, the best thing is to set up a vari able key and in -
sert key+ be fore each pitch value: thus the sec ond line be comes:

20 BEEP 1,key+0: BEEP 1,key+2: BEEP .5,
 key+3: BEEP.5,key+2: BEEP 1,key+0

Be fore you run a pro gram you must give key the ap pro pri ate value – 0 for C, 2 for D, 12 for
C an oc tave up, and so on. You can get the com puter in tune with an other in stru ment by
ad just ing key, us ing frac tional values.

You also have to work out the du ra tions of all the notes. Since this is a fairly slow piece, we
have al lowed one sec ond for a crotchet and based the rest on that, half a sec ond for a
qua ver and so on.

More flex i ble is to set up a vari able crotchet to store the length of a crotchet and spec ify
the du ra tions in terms of this. Then line 20 would be come:

20 BEEP crotchet,key+0: BEEP crotchet,
 key+2: BEEP crotchet/2,key+3: BEEP
 crotchet/2,key+2: BEEP crotchet, key+0

(You will prob a bly want to give crotchet and key shorter names.)

By giv ing crotchet ap pro pri ate val ues, you can eas ily vary the speed of the piece.

When us ing BEEP, one must re mem ber that via NextBASIC we can only pro duce one tone
per unit of time since this is done via the CPU, there fore you are re stricted to
unharmonised tunes. If you want har mo nies, you should ei ther use the PLAY com mand
de scribed in the fol low ing sec tion or pro gram the com puter in Ma chine Code. Fur ther -

180 ZX Spectrum Next – User Manual

Chapter 19 – Sound and Music Basic sounds with the BEEP command

more, since tone gen er a tion via the CPU is an ex clu sive task, you can not do any thing else
on or off screen while the sound is play ing, so in or der to per form other func tions while
sound is gen er ated by us ing the CPU, you will also have to pro gram in Ma chine Code, or
–as sum ing you have the Ac cel er ated ver sion or a Pi Zero in stalled– use the au dio play -
back fa cil i ties de scribed in the last sec tion of this chap ter (the lat ter work ing in de pend -
ently of whatever the ZX Spectrum Next is doing).

Try pro gram ming tunes in for your self – start off with fairly sim ple ones like Three Blind
Mice. If you have nei ther pi ano nor writ ten mu sic, find a very sim ple in stru ment like a tin
whis tle or a re corder, and work the tunes out on that. You could make a chart show ing the
pitch value for each note that you can play on this instrument.

Type:
FOR n=0 TO 1000: BEEP .5,n:

NEXT n

This will play notes as high as it can, and then stop with er ror re port B In te ger out of range.
You can print out n to find out how high it did ac tu ally get.

Try the same thing, but go ing down into the low notes. The very low est notes will just
sound like clicks; in fact the higher notes are also made of clicks in the same way, but
faster, so that the hu man ear can not dis tin guish them.

Only the mid dle range of notes are re ally any good for mu sic; the low notes sound too
much like clicks, and the high notes are thin and tend to war ble a bit.

Type in this pro gram line:

10 BEEP .5,0: BEEP .5,2: BEEP .5,4:
 BEEP .5,5: BEEP .5,7: BEEP .5,9:
 BEEP .5,11: BEEP .5,12: STOP

This plays the scale of C ma jor, which uses all the white notes on the pi ano from mid dle C
to the next C up. The way this scale is tuned, is ex actly the same as on a pi ano, the
so-called even-tem pered tun ing be cause the pitch in ter val of a semi tone is the same all
the way up the scale. A vi o lin ist, how ever, would play the scale very slightly dif fer ently, ad -
just ing all the notes to make them sound more pleas ing to the ear. He can do this just by
mov ing his fin gers very slightly up or down the string in a way that a pianist can’t.

The nat u ral scale, which is what a vi o lin ist would play, co mes out like this:

20 BEEP .5,0: BEEP .5,2.039: BEEP .5,
 3.86: BEEP .5,4.98: BEEP .5,7.02:
 BEEP .5,8.84: BEEP .5,10.88:
 BEEP .5,12: STOP

You may or may not be able to de tect any dif fer ence be tween these two; some peo ple
can. The first no tice able dif fer ence is that the third note is slightly flat ter in the nat u rally tem -
pered scale. lf you are a real per fec tion ist, you might like to pro gram your tunes to use this
nat u ral scale in stead of the even-tem pered one. The dis ad van tage is that al though it
works per fectly in the key of C, in other keys it works less well – they all have their own nat u -
ral scales – and in some keys it works very badly in deed. The even-tem pered scale is only
slightly off, and works equally well in all keys.

This is less of a prob lem on the com puter, of course, be cause you can use the trick of add -
ing on a vari able key.

Some mu sic – no ta bly In dian mu sic – uses in ter vals of pitch smaller than a semi tone. You
can pro gram these into the BEEP state ment with out any trou ble; for in stance the
quartertone above mid dle C has a pitch value of .5.

You can make the key board beep in stead of click ing by:

ZX Spectrum Next – User Manual 181

Basic sounds with the BEEP command Chapter 19 – Sound and Music

POKE 23609,255

The sec ond num ber in this de ter mines the length of the beep (try var i ous val ues be tween
0 and 255). When it is 0, the beep is so short that it sounds like a soft click.

Enhanced Sound and Music with PLAY

When us ing NextBASIC, you have two dif fer ent ways to make mu sic and sound ef fects.
You can still use the BEEP com mand (as dis cussed above) but you also have ac cess to
the PLAY com mand which al lows you to make much more so phis ti cated mu sic with up to
nine notes play ing at once. It also gives you more con trol over the sound of each in di vid ual
note than is pos si ble us ing BEEP.

Mak ing mu sic and sound ef fects with PLAY is sim ple. You just type in the se ries of notes
that make up a tune, then ask the ZX Spec trum Next to PLAY them. You can also in clude
in struc tions that tell your ma chine what sort of tone you want for the sound. Please note
that case is im por tant when typ ing in the string ex pres sions in the ex am ples ie. ga should
not be typed as Ga, gA or GA.

To hear some of the wide range of sounds that you can make, type in one of the two pro -
grams be low, RUN it, then try the other ex am ple. Don’t worry if the pro gram lines look
com pli cated, they are ex plained in de tail later.

Mu sic:

10 LET b$="O4(CDEC)(5EF7G)(3GAGF5EC)
 5Eb7E9EbE"
20 PLAY "T180O6(CDEC)(5EF7G)(3GAGF5EC)
 5Cg7C9CgC",b$,"O3(7CG)(7CG)(7CG)
 5GD7G9GDG"

Sound Ef fects:

10 LET a$="M8UX350W5O7(((C)))": PLAY a$:
 PAUSE 25
20 PLAY "M56UX5000W1O3(((C)))": PAUSE 25
30 LET a$="M56W2O1N8C" : PLAY a$: PAUSE
 25

Using the PLAY command

In the ex am ples above, you will see that each time the PLAY com mand ap pears, it is fol -
lowed by up to nine dif fer ent pa ram e ters in the form of ei ther string vari ables, string lit er als
or a com bi na tion of both in a statement like:

PLAY P1C1,P1C2,P1C3,P2C1,P2C2,P2C3,P3C1,P3C2,P3C3

where PxCy are strings that re fer to the PSG (P) num ber (x) (1 to 3) and chan nel (C) num -
ber (y) (1 to 3). The or der of these is spe cific and each PLAY com mand must have the full
com ple ment if you re quire all the chan nels to re pro duce a sound. You can not is sue two or
more PLAY com mands to con trol in di vid ual PSGs as each PLAY state ment sends a batch
of in struc tions to the au dio hard ware. If you wish one or more chan nels to be si lent you
should re place them with the empty string "". As we will ex am ine be low, the strings con tain
all the in for ma tion to tell your ZX Spec trum Next which sounds to make.

As we dis cussed, PLAY con trols nine sep a rate sound chan nels over the 3 avail able PSGs,
each called A, B, and C.

In the Mu sic ex am ple given above, "T180O6(CDEC)(5EF7G)(3GAGF5EC)5Cg7C9CgC"
tells chan nel A of PSG1 to play the mel ody line, b$ tells chan nel B of PSG1 to play a har -
mony, and "O3(7CG)(7CG)(7CG)5GD7G9GDG" tells chan nel C of PSG1 to play a bass
part. In the Sound Ef fects ex am ple, only one noise is used at a time (al though up to nine

182 ZX Spectrum Next – User Manual

Chapter 19 – Sound and Music Enhanced Sound and Music with PLAY

can be), so each one is in chan nel A of PSG1 and the com mand is sim ply PLAY a$ – or (as
seen in line 20) PLAY "M56UX5000W1O3(((C)))".

In fact any of the chan nels can pro duce ei ther a mu si cal tone or noise or even noth ing at
all, so you can mix sound ef fects in with your mu sic (see Chan nel se lec tion later on).

Constructing strings

Com pos ing mu sic and sound ef fects in NextBASIC is just a mat ter of cre at ing strings con tain ing
the in for ma tion you want. Try this – very sim ple – ex am ple, which plays just one note – an A.

LET a$="a": PLAY a$

Any mu sic pro gram us ing PLAY will gen er ally use string vari ables rather than lit er als to tell
it what to play, as you can see by look ing at the ear lier ex am ples. The more com plex, or
lon ger, the piece and the more com pli cated sound, the more com plex the strings be come
as ob vi ous from the in creased com plex ity of the examples above.

Any mu si cal sound has a pitch and du ra tion. It also has a vol ume and tim bre. The strings in
the ear lier ex am ples con tain in for ma tion about all of these. The sum mary be low lists each
pos si ble com mand, and they are ex plained in detail opposite.

PLAY command summary

This is a brief list of the com mands which can be con tained in a PLAY string. Note that all
let ters ex cept note names must al ways be in cap i tals.

String en try Func tion

c-b or C-B Gives pitch of note within current octave range

$ Flattens note following it

Sharpens note following it

Ox Sets octave range x (0 to 8)

1-12 Sets duration of note

& Denotes a rest

N Separates two numbers

Vx Sets volume to x (0-15)

Wx Sets volume effect to x (0-7)

U Turns on volume effect in the current channel

Xx Sets duration of volume effect to x (0-65535)

Tx Sets tempo to x (60-240) bpm

() Enclose repeated phrase

! ! Enclose a comment

H Halts a PLAY command

Mx Selects channel and sets type to x (1-63)

Yx Turns on MIDI channel x (1-16)

Zx Sends x as a MIDI patch

L Restricts output from current PSG to Left Speaker Only

R Restricts output from current PSG to Right Speaker Only

S Restores stereo mode to current PSG

Ta ble 11 – PLAY com mands

Setting the pitch

As you saw above, you set the pitch of any note by giv ing its mu si cal name – eg. C E G.
Sharp notes are pre fixed by # (eg #C) and flat notes by $. A two-oc tave range in the key of
C, which use the let ters c to b for the notes in the lower oc tave and C to B in cap i tals for the

ZX Spectrum Next – User Manual 183

Constructing strings Chapter 19 – Sound and Music

higher one are avail able at any mo ment. Any num ber of notes within these two oc taves
can be played one af ter an other, for example:

10 LET a$="cfedafgCFEDAFGCC"
20 PLAY a$

If you want to span more than just two oc taves, you can change the over all pitch of the chan -
nel play ing by us ing the oc tave com mand O fol lowed by a num ber from 0 to 8. If you do not
spec ify an oc tave (as in the ex am ple above), this de faults to 5 (the range con tain ing mid dle
C). The oc tave com mand re mains in force for all notes fol low ing it un til a new oc tave com -
mand is given.

This pro gram lets you hear the same tune played in a higher oc tave (just add the O7 to
your ear lier pro gram):

10 LET a$="O7cfedafgCFEDAFGCC"
20 PLAY a$

Try chang ing the oc tave num ber pro gres sively to hear the full pitch range which your ZX
Spec trum Next’s PSGs can pro duce.

Since each pitch range cov ers two oc taves, two ad ja cent ranges over lap. For ex am ple, the
high part of O4 con tains the low part of O5 (see Fig ure be low). The fol low ing di a gram shows
how you can cre ate dif fer ent notes us ing the PLAY oc tave com mand. As men tioned pre vi -
ously, the com mand O fol lowed by a num ber from 0 to 7 sets the cur rent PSG to a range of
two oc taves be gin ning with a C. The di a gram shows the com plete range of notes cov ered by
O3, O4, and O5. Ad ja cent oc tave ranges over lap, so the same notes ap pear in the up per part
of one range and the lower part of an other. In di vid ual notes within an oc tave range are set by
us ing the let ters c to b in lower case for the lower notes and C to B in cap i tals to give the notes
in the up per oc tave. Plac ing a # be fore any note let ter gives a sharp note – a $ flat tens it.

Note duration

If you do not spec ify the length of each note, they will all be played at the same length (as
crotch ets) as in the ex am ples above. You can fix the length of any note or se ries of notes
by pre fix ing it with a num ber from 1 to 12. This pro gram lets you hear the dif fer ent note du -
ra tion with num bers from 1 to 9 (there is a rea son for the max i mum num ber be ing 9 in this

184 ZX Spectrum Next – User Manual

Chapter 19 – Sound and Music Note duration

Fig. 26 – Octaves and Pitch values for making music with PLAY

ex am ple as you will see in the table below).

10 LET a$="1C2C3C4C5C6C7C8C9C"

20 PLAY a$

The PLAY com mand sup ports 9 stan dard mu si cal du ra tions: from a semi qua ver (six -
teenth note) to a semi breve (whole note) of the time sig na ture. There are three ex tra du ra -
tion val ues which de note trip let notes (three notes played in the time nor mally used for
two): from a trip let semi qua ver (trip let six teenth) to a trip let crotchet (trip let quar ter). While
the first 9 val ues are set and ap ply to all the notes that fol low, a trip let du ra tion value
(10-12) only ap plies to the next 3 notes that will fol low it in the string. For example:

10 PLAY "11ACE"

plays a trip let qua ver of A, C and E. The fol low ing ta ble lists the note du ra tion val ues and
their mu si cal term equiv a lent.

Value
Note name
(Stan dard)

Note name
(Brit ish)

Mu si cal
no ta tion

1 Sixteenth Semiquaver s

2 Dotted sixteenth Dotted semiquaver s.

3 Eighth Quaver e

4 Dotted eighth Dotted Quaver i

5 Quarter Crochet q

6 Dotted Quarter Dotted Crochet j

7 Half Minim h

8 Dotted Half Dotted Minim d

9 Whole Semibreve w

10 Triplet sixteenth Triplet semiquaver T

11 Triplet eighth Triplet quaver T

12 Triplet quarter Triplet crotchet t

Ta ble 12 – Note du ra tion val ues

Ad di tion ally there is also the abil ity to in sert mo ments of si lence (or rests as they're called
in mu sic ter mi nol ogy) de noted by the am per sand sym bol (&). Rests, last as long as the
cur rent note play ing. For example:

10 PLAY "7A&B&C&D&E"

is five min ims with equal (minim-length) si lence du ra tions be tween them.

Tied notes can be in di cated by giv ing the two note du ra tions con nected by an un der score
char ac ter (_) and the note name, eg.:

10 PLAY "3_5A"

The sec ond note du ra tion you give will also ap ply to any fol low ing codes un til you give an -
other du ra tion code.

ZX Spectrum Next – User Manual 185

Note duration Chapter 19 – Sound and Music

The N Command

In some of the ex am ples you will see the let ter N used to in tro duce a se ries of notes within
the string:

PLAY "O7N1CDE"

N is used in cases where two sets of num bers would oth er wise clash. In the ex am ple
above, O is set to oc tave 7, then a se ries of notes is given, start ing with the du ra tion code
1. With out the N code, NextBASIC would read the oc tave code as 71 – ob vi ously not what
was intended!

Note volume

The over all vol ume of the sound is con trolled by the vol ume set ting of your dis play or am -
pli fier. You can con trol, how ever, the vol ume of in di vid ual notes and phrases within the
tune by us ing the V com mand. V fol lowed by a num ber from 0 to 15 sets the note(s) that
fol low to a con stant vol ume level. The lower the num ber, the qui eter the sound, with V0 be -
ing com pletely si lent (V0 is a use ful way of stop ping one chan nel play ing while oth ers con -
tinue). V15 is the max i mum pos si ble value and will be used au to mat i cally by NextBASIC if
you do not specify a level.

The low vol umes are very quiet and you will nor mally use 10 to 15 un less you are out put -
ting to an am pli fi ca tion sys tem. Try run ning this program:

10 LET a$="V10cdefgabCDEFGAB"

20 PLAY a$

Now try chang ing the num ber af ter the V to a new value to hear the dif fer ence.

Volume effects

In stead of you just set ting each note to a fixed vol ume, PLAY also lets you change the vol -
ume of the sound while it is play ing. For ex am ple, you can make a note start sud denly and
then die away (like a pi ano) or make a sound ef fect rise and fall in vol ume (like a steam
train).

This ef fect is con trolled by the let ter W which can be in cluded in any of the strings con -
trolled by the PLAY com mand. You must also in clude the let ter U in each string where you
want to use the ef fect. You can not use it if the string al ready has a vol ume set ting (if it con -
tains a V) – the vol ume com mand will over ride the effect.

The W must be fol lowed by a num ber from 0 to 7 which con trols how the sound builds up
(called at tack) or falls off (called de cay). Ta ble 13 that fol lows, shows the full range of num -
bers and what they do to gether with a vi sual rep re sen ta tion of the vol ume ef fect ap plied to
the sound playing:

This pro gram plays the same note with each ef fect in turn to let you hear what they sound
like:

10 LET a$="UX1000W0C&W1C&W2C&

W3C&W4C&W5C&W6C&W7C"

20 PLAY a$

No tice the U to turn on the ef fect, then the se ries of W num bers.

There is one other new com mand used here, the let ter X. This can be fol lowed by a num -
ber from 0 to 65535 to set the length of the sound ef fect – the larger the num ber, the lon ger
the ef fect lasts.

The X com mand is not man da tory. If you choose not to in clude one, NextBASIC will au to -
mat i cally choose the lon gest. In gen eral, re pet i tive ef fects (W4 to W7) are more ef fec tive

186 ZX Spectrum Next – User Manual

Chapter 19 – Sound and Music The N Command

with short set tings, eg X300. Sin gle-shot ef fects (W0 to W3) need a lon ger pe riod, eg
X1000. Try chang ing the value af ter X in the pro gram above to hear the difference.

Tempo

The speed (tempo) at which a piece of mu sic is played can be set with the com mand T fol -
lowed by the num ber of crotchet beats per min ute (bpm) in the range 60 to 240. The com -
mand con trols the speed at which all notes are played, but can only be in cluded in
chan nel A of PSG1 (the first string af ter the PLAY com mand) oth er wise it is ig nored, eg:

10 LET a$="T180cdefg"

20 PLAY a$, "T120CDEFG"

will play oc tave chords but at 180bpm as the sec ond set ting is ig nored. If no tempo is
spec i fied, the mu sic will be played at 120 bpm.

Repeated phrases

Any mu si cal phrase can be re peated by en clos ing the ap pro pri ate string or part of a string
in pa ren the ses. For example:

10 PLAY "abC(DEFG)"

will re peat the last four notes. If there is an un equal num ber of pa ren the ses, the phrase will
be re peated back to the last pa ren the sis. If there is only a clos ing pa ren the sis, the phrase
will be re peated back to the be gin ning of the string. As an example:

10 PLAY "abCDEFG)"

will re peat all seven notes. Dou ble clos ing pa ren the ses:

10 PLAY "O2CEGA))"

will cause an in fi nite re peat. This is par tic u larly use ful for things like re pet i tive bass lines. To
turn off an in fi nite re peat you will need to use the H com mand.

ZX Spectrum Next – User Manual 187

Tempo Chapter 19 – Sound and Music

Effect Value Visual Representation Description

0 Decay then stop

1 Attack then stop

2 Decay then hold

3 Attack then hold

4 Repeated Decay

5 Repeated Attack

6 Repeated Attack-Decay

7 Repeated Decay-Attack

Table 13 – Volume effects values

The H command

An H in cluded in any string im me di ately turns off the PLAY com mand. The main use of this
is where you have an in fi nitely re peated bass line in one string. You can stop this at the end
of the tune by putt ing an H on the end of the string which plays the melody.

Comments

You can in clude re mind ers and com ments any where you like by us ing !! marks. Any thing
writ ten af ter a ! will be ig nored un til the next ! or the " at the end of the string is reached, for
example:

10 PLAY "abCDEFG!chorus!aCEaDG"

Channel selection

The com mand M is used to se lect which of the three chan nels are in op er a tion per PSG
and whether these give noise or mu si cal tones.

You can have a max i mum of nine chan nels (three per PSG) in use at any one time, but it
does not mat ter whether they are all tone, all noise, or a mix ture of both.

Your choice is en tered with a num ber fol low ing the M, worked out like this:

Tone Chan nels Noise Chan nels

Channel A B C A B C
Number 1 2 4 8 16 32

Ta ble 14 – Chan nel au dio type se lec tion codes

Mark each chan nel you want to turn on, and note down its num ber from the ta ble above.
Then just add them to gether to get the code you should use af ter the M. For ex am ple, if
you want to use tone chan nels A, B, and C, you add the num bers 1+2 +4 = 7, so you use
the com mand M7. In the same way, M56 would turn on noise chan nels A, B, and C.

Noise can be used on any chan nel but the most wide-rang ing fre quen cies are avail able in
chan nel A for each PSG. For the best re sults, put your sound ef fects in the string which
con trols this chan nel for each PSG – 1st, 4th and 7th string, in other words the first string per
PSG af ter the PLAY command.

Stereo control

The PLAY com mands L, R and S con trol the ste reo im age for each PSG. The first two re -
strict the cur rent PSG's au dio out put to Left and Right speakers re spec tively while the lat ter
re sets the Ste reo im age. If your ZX Spec trum Next is set up with ABC ste reo (the de fault),
nor mally chan nel A goes to the left speaker, B goes to left and right, and C goes to right.

There fore, if the L com mand is used, only chan nels A and B from the cur rent PSG will be
au di ble. Sim i larly, if R is used, only chan nels B and C will be au di ble. Like the M com -
mand, the L, R and S com mands need to be re-en tered in the strings tar get ing each PSG.

Digital Audio

Your ZX Spec trum Next also con tains hard ware that can out put dig i tal au dio, that is sound
pre vi ously re corded dig i tally for re pro duc tion, in a sim i lar man ner to your house or car CD
and MP3 play ers. There is no easy way to ma nip u late this hard ware from NextBASIC so
NextZXOS pro vides a dot com mand1 (more on dot com mands in Chap ter 20 – NextZXOS

188 ZX Spectrum Next – User Manual

Chapter 19 – Sound and Music The H command

1 Dot commands are short programs residing in folder c:/dot/ which are used to extend NextZXOS, or to expose
facilities not normally available to NextBASIC to the user. Dot commands were originally created for esxDOS (an
alternative, free, ZX Spectrum–compatible Operating System which also works on the ZX Spectrum Next) and whose
format was adopted by NextZXOS via its esxDOS emulation layer. Most esxDOS dot commands will work with
NextZXOS and vice-versa unless they use some special facility not covered by either the esxDOS emulation layer or
they are OS or machine dependent.

and al ter na tives), that can be in cor po rated into your pro grams and which al lows you to
play any WAV file stored on SD Card me dia. In or der to play back a digital audio wave file,
type:

.wavplay file.wav

where file.wav is the au dio file you want to play. This can be ac cessed (like all other
NextZXOS dot com mands) from the 48K BASIC en vi ron ment as well and fully in cor po rated
into all your NextBASIC pro grams. You can find more in for ma tion on how to ac cess the
dig i tal au dio hard ware of your ZX Spec trum Next in Chap ter 23 – IN, OUT and the Next
Registers .

Using the Pi accelerator for audio

If you have the Ac cel er ated ver sion of the ZX Spec trum Next, or have a Rasp berry Pi Zero
in stalled on your board, then you have more op tions avail able au dio-wise. These in clude
(but are not lim ited to) play back of:

• Commodore 64 SID files

• “Tracker” MOD files

• Atari ST SDH files

• MP3 files

• High definition wav files

and many, many more.

The way the sys tem works is as fol lows: The ZX Spec trum Next com mu ni cates with the
Ac cel er a tor via its sec ond ary UART2 and sends com mands and au dio files to the spe cial -
ised SU Per vi sor soft ware that is run ning on the Rasp berry Pi Zero. The Pi Zero in turn in ter -
prets these files and re pro duces the au dio con tained therein via it's GPIO port onto the ZX
Spec trum Next I2S3 port which in turn mixes it with the rest of its au dio out put and re di rects
it to which ever out put you have avail able. In es sence when it co mes to play back, the ZX
Spec trum Next is con sid ered a "sound card" where the ac cel er a tor is con cerned and two
ex tra DACs where the ZX Spec trum is con cerned. As a con se quence you can have Dig i tal
Au dio (on the ZX Spec trum Next), all three PSGs play ing AND Dig i tal Audio (on the Pi
Zero) all playing simultaneously!

To use the Pi au dio fa cil i ties you need to first en able the sec ond ary UART and set it to the
ac cel er a tor. In NextBASIC or the Com mand Line you must type:

CD "c:/demos/uart"

and press ENTER. Then type:

LOAD "pi.bas"

You'll get a mes sage stat ing 9 STOP state ment, 50:1in di cat ing the sys tem is now ready to
play au dio us ing the Pi Zero. Feel free to poke about the list ing of the PI.BAS pro gram as it
shows you the us age of Next Reg is ters (see Chap ter 23 for more).

Play ing au dio files re quires a dot com mand called .pisend which you can find in c:/dot/
which serves a two-fold pur pose: to send files to the Pi Zero's tem po rary stor age and send
the ap pro pri ate com mand for it to play. Thank fully D. Rimron-Soutter and Da vid Saphier,
maintainers of NextPi4 and .pisend re spec tively, have pack aged all this nicely into lit tle
NextBASIC pro grams (lo cated in c:/nextzxos/) which you can ei ther call di rectly or via the
Browser by se lect ing a filetype al ready reg is tered. Cur rently reg is tered filetypes in clude
.SID, .MOD, .XM, .TZX and .SDH.

ZX Spectrum Next – User Manual 189

Using the Pi accelerator for audio Chapter 19 – Sound and Music

2 UART or Universal Asynchronous Receiver-Transmitter is a hardware device that exchanges data sequentially
between two systems. In our case this is done between the ZX Spectrum Next hardware and the Pi Zero accelerator
via its GPIO port.

3 I2S or Inter-IC Sound is a serial bus interface standard to connect digital audio devices.
4 NextPi is the operating system running on the Pi Zero accelerator that's purposely built to support the Next.

To il lus trate how this works, we shall at tempt to play an Atari™SDH file. As sum ing you
have a SDH file named warhawk.sdh (search for it and down load it on the internet; it's
freely avail able) on the root of your SD card, play ing it is as sim ple as:

LOAD "c:/nextzxos/sndplay.bas":

LET f$="c:/warhawk.sdh":GO TO 10

The screen will read Play ing... c:/warhawk.shd and the mu sic will start play ing from your
speak ers.

External Audio Output

If you are in ter ested in do ing more with sound from the ZX Spec trum Next, like hear ing the
sound that BEEP and PLAY make on some thing other than the usu ally lim ited au dio of
your dis play, you will find that the au dio sig nal is also pres ent on the Au dio Out socket on
the back of the ma chine. You may use this to con nect to a pair of head phones or a higher
qual ity am pli fier. Note that this will not dis rupt au dio re pro duc tion on the dig i tal dis play ca -
ble, there fore you may want to turn down the vol ume on your dis play be fore plug ging an
ex ter nal au dio re pro duc tion de vice. Note also, that there is no vol ume con trol for the Au dio
Out socket so you should take that into ac count when using headphones or an amplifier.

Exercises:

1. Re write the Mahler pro gram so that it uses FOR loops to re peat the bars.

2. Pro gram the com puter so that it plays not only the fu neral march, but also
the rest of Mahler’s first sym phony.

3. Re peat ex er cises 1 and 2 above by uti lis ing PLAY in stead of BEEP.

190 ZX Spectrum Next – User Manual

Chapter 19 – Sound and Music External Audio Output

TZX files are "perfect" ZX Spectrum tape images. Due to them being compressed, they
require a much more powerful CPU than the Z80N present on the Spectrum Next in
order to be decompressed to their original tape audio stream. While not audio in the
strict sense we're discussing in this chapter, they do use the audio subsystem to be
loaded on the ZX Spectrum Next side and as such they are covered here.

NextZXOS
and alternatives

NextZXOS and alternatives

Guide to NextZXOS

Un til now, we have been talk ing about NextBASIC, the pro gram ming lan guage with which
you "talk" to your ZX Spec trum Next and get it to do things. Un der neath NextBASIC how -
ever, lurks an other pro gram, one that al lows your com puter to com mu ni cate with the hard -
ware de vices con nected to it and the world at large. It man ages your com puter's mem ory,
makes sure your data is safe and ac cu rate, that your pro grams be have as in tended by
their pro gram mers and per forms im por tant "house keep ing" on your stor age de vices. This
pro gram is called an op er at ing sys tem and in the ZX Spec trum Next's case it is called
NextZXOS.
NextZXOS, writ ten by Garry Lan cas ter, is the di rect suc ces sor to his +3e/IDEDOS, which
in turn co mes di rectly from the first proper Sinclair ZX Spec trum op er at ing sys tem called
+3DOS which first appeared on the ZX Spectrum +3.

NextZXOS main features

NextZXOS ex tends +3DOS, +3e and IDEDOS and fea tures the fol low ing:
• FAT16 and FAT32 support for industry-standard compatibility with mass storage

devices while retaining IDEDOS/+3DOS compatibility for a full range of storage
choices

• Long File Name (LFN)1 support
• Proper subfolders/subdirectories
• Memory Management facilities
• Virtual (container) file systems in disk and tape images2

• Installable device drivers
• Menu-driven file manager with extensible filetype associations/launchers
• esxDOS emulation layer for interoperability across ZX Spectrum compatible

machines and extended dot command support
• Automatic execution of software on boot
• Command-line interface
• Streaming support
• Virtual memory support (swap partitions)
• Timekeeping facilities
• Availability of disk and file management even on legacy (via dot commands),

48K modes
• Increased compatibility with previous models of ZX family of computers3

• Support for a variety of snapshot formats
• Multi-lingual and multi-font capabilities
• Extended windowing facilities
• Increased speed of operation compared to the previous versions
• Proper CP/M4 3 compatibility

Un like other op er at ing sys tems, NextZXOS tightly in te grates with the in-built pro gram ming
lan guage NextBASIC, to the point that it can be mis taken as be ing part of it. In re al ity how -
ever, NextZXOS pro vides two rich APIs (one be ing the na tive NextZXOS API and the other

192 ZX Spectrum Next – User Manual

Chapter 20 – NextZXOS and alternatives Guide to NextZXOS

1 Long File Name support means that a filename under NextZXOS can be up to 255 characters long as opposed to the
earlier 11 (8 for filenames +3 for extension/filetype) character limit . LFN capability is not reserved for files. Folders can
also be up to 255 characters long. Longer file and folder names help with the organisation of your files as it is easier to
use more descriptive names.

2 A container file system / disk image is a bit-for-bit copy of the contents of a mass storage medium contained within a
single file. For example what used to be an entire floppy disk can be represented by one file, which NextZXOS will
access with traditional disk and file management commands once this is attached (mounted) by the operating
system.

3 NextZXOS is compatible –via emulators provided by Paul Farrow– with ZX80 and ZX81 while also being more
compatible than its predecessor with Timex Sinclair as well as the 128K and 48K lines of ZX Spectrum machines.

4 CP/M is an older operating system for personal computers with a vast library of software.

the esxDOS-com pat i ble API) which can be used from ma chine-code or a lan guage other
than NextBASIC (for ex am ple C) to pro vide them with all the fa cil i ties needed for ac cess ing
your ZX Spec trum Next with out hav ing to write low-level ac cess to the com puter's hard -
ware from scratch. The dis tinc tion is sub tle and more eas ily dis cern ible in fa cil i ties that are
ex posed to the 48K leg acy mode of op er a tion where the NextBASIC com mands do not ex -
ist and their place is taken by the afore men tioned dot com mands.

In the fol low ing sec tions we will ex am ine the NextBASIC us age of NextZXOS fa cil i ties be -
fore we ex tend the dis cus sion to dot com mands and the NextZXOS Com mand line so for
the next few sec tions you can ap proach the sub ject as a NextBASIC topic if you feel more
com fort able that way.

Let's how ever start by in tro duc ing top ics in the or der they will be needed in our dis cus sion.

Files, Drives, Partitions and Disks

Like most Op er at ing Sys tems, NextZXOS uses the con cept of Files to store data in a hi er -
ar chi cal or gan ised set called a Drive iden ti fi able by a Drive Name. This is the com bi na tion
of a let ter5 from A to P suffixed by a co lon ie. d:, which in turn can be con tained within a
Disk. A file is any type of col lec tion of data; Sprites, Ar rays, NextBASIC pro grams, ma chine
code, im ages or col lec tions of the above. While NextZXOS via NextBASIC sup ports a fi nite
set of file types, this set can be ex tended with the use of ex ter nal pro grams and dot com -
mands. For the fol low ing sec tions we will con cen trate to what is avail able via NextBASIC
and the pro vided dot com mands with a brief dis cus sion of how NextZXOS (and
NextBASIC in turn) can be extended to handle more file types.

Files are usu ally or gan ised in fold ers. While fold ers are not nec es sary for the stor age of
files, they are ad vis able as they help cate go rise and group files in a log i cal way, which al -
lows them to be searched and ac cessed eas ily. That be comes ap par ent as your col lec -
tion of files grows from a few tens to hun dreds or thousands.

As men tioned above, files them selves are stored on disks, which are the phys i cal de vices that
can be re moved from the com puter and whose con tents are not lost like the main mem ory af -
ter each power cy cle. De pend ing on the type of disk, there may be one or more data struc -
tures on it called par ti tions which as the name im plies is a way to vir tu ally or gan ise the
avail able space on the disk into smaller units. Par ti tions can be as signed to drives or sit un -
used –with or with out data– in vis i ble to NextZXOS (un til a drive is as signed to them).

Apart from the phys i cal disks, NextZXOS also al lows the use of vir tual disks and tape im ages.
These are spe cial files that con tain an ex act rep lica of the me dium they sim u late. They too,
can be as signed to drives (see the foot note re gard ing tape im ages) as phys i cal disks can and
they ap pear to the user (and NextBASIC) as any other phys i cal disk. There are some spe cial
con sid er ations re gard ing these spe cial files which we will visit fur ther in this chap ter.

Working with files

In our ex am ples in the pre vi ous chap ters we have al ready used files and spe cif i cally one
par tic u lar type of file: NextBASIC pro grams. Even more spe cif i cally, we have SAVEd and
LOADed them by us ing two com mands: SAVE and LOAD.

ZX Spectrum Next – User Manual 193

Files, Drives, Partitions and Disks Chapter 20 – NextZXOS and alternatives

In this chapter, a lot of commands produce visual feedback that may be easier to see
and understand on a 64 or 85 column display. Although NextZXOS menus are covered
much later in the chapter, it may be of benefit to learn to use the Command Line in
combination with the 32/64/85 option. You get to the Command Line menu either from
the main NextZXOS menu or by pressing EDIT and navigating to it while in NextBASIC.
Pressing EDIT again will allow you to select the 32/64/85 option which will cycle through
all available widths until you find one that visually satisfies you.

5 NextZXOS cannot assign all letters in the range A to P as drives, since some are reserved; C: is always the boot drive,
M: is the RAMdisk and T: (an exception to the A to P range) is the tape.

Apart from that ba sic func tion al ity; we can also copy or move files from one lo ca tion (folder
or drive or a com bi na tion of both) to an other lo ca tion, re name them, erase them, and cat a -
logue them; that is to pro duce a list of all the avail able files in a lo ca tion. These func tions
are pos si ble with the use of the COPY, MOVE, ERASE and CAT com mands or their dot
com mand equiv a lents: .cp, .mv, .rm and .ls6.

Filenames

Be fore we visit the com mands that ma nip u late files, it's best we visit the sub ject of file -
names first as there are spe cial con sid er ations on how and why a file is named.

First of all, file names are ba si cally strings that are made by up to four parts (ac cord ing to
which file sys tem we use as we will see fur ther be low) that help NextZXOS to uniquely iden -
tify a file. These are:

• User Area with Drive Name –or–
User Area followed by a colon (:) character if accessing files on the same drive
–or– Drive Name

• folder name or combination of folder names separated by forward (/) or
backward (\) slash characters

• actual file name

• suffix of a dot (.) character followed by a file type of up to three characters (for
example .bas)

Of these only the third part is ab so lutely re quired and ev ery other part is op tional. Also not
ev ery part is ap pli ca ble ev ery where in NextZXOS. This strictly de pends on the kind of
filesystem the files are lo cated on. For ex am ple you can only use User Ar eas on vir tual disk
im ages, the RAMdisk and IDEDOS (+3e) par ti tions but not on FAT par ti tions (we will ex am -
ine these a lit tle later), while you can not use fold ers in the RAMdisk and vir tual disk im ages
as the con cept of fold ers does n't ex ist there7. Sim i lar for tape im ages or ac tual tapes where
you can only use drive names (spe cif i cally t:) and up to 10 charactes as a file name but not
fold ers.

File names can be up to 255 char ac ters in length (in clu sive of dot char ac ter and the op -
tional type), how ever, for com pat i bil ity rea sons on vir tual disks, IDEDOS par ti tions and the
RAMdisk, they can only be 8 (name) + 3 (type) char ac ters in length (ex clud ing the op tional
user area and drive let ter combinations).

Fi nally, some char ac ters are re served and can not be used to name files. Files can use the
fol low ing char ac ters:

• Letters: abcdefghijklmnopqrstuvwxyz (upper or lower case)

• Digits: 0123456789

• Other characters8: # $ @ _ { } ~ £

Up per and lower case let ters are con sid ered as hav ing the same value for file names, so
EXAMPLE and ex am ple would be iden ti cal as far as NextBASIC is con cerned. They will
how ever be listed in the case they were stored in, when a cat a logue is requested.

A file name can end with an op tional type field which is just up to three char ac ters9 long that
you may wish to use in or der to group to gether or quickly iden tify files of the same type. If a

194 ZX Spectrum Next – User Manual

Chapter 20 – NextZXOS and alternatives Filenames

6 SAVE and LOAD do not have dot command equivalents as they're already available in the 48K mode personality even
though the latter was conceived prior to the introduction of mass storage devices to the ZX Spectrum family of
computers.

7 Technically for floppy disk , IDEDOS and Tape virtual images as well as the RAMdisk slash characters can be a part of
a filename but they're not an organisational unit as the folder is and since (as we'll see later) the filenames in these
cases are restricted in size, it's not advisable to use them.

8 Characters " and ' are available in some situations (for example for tape images or for CP/M) for filenames but are
reserved under NextBASIC and cannot be used directly.

9 Type fields, separated by a dot from the name field, are up to 3 letters long as a matter of both compatibility and
convention. In reality, in FAT drives like the System/Next™ card your ZX Spectrum Next came with, there are no
restraints on how many dots a filename can have but any filename with the dot character located at more than 4
characters before its end, is considered to have an empty type field (always keeping within the maximum allowed
length of a filename). See also the discussion regarding wildcards to see why this useful to know.

type field is spec i fied, it must be pre ceded by a dot. Un like some other BA SICs,
NextBASIC does not au to mat i cally al lo cate a type to files if one is not specified.

You may find it use ful to add your own types – a pop u lar con ven tion is to use .BAS to iden -
tify NextBASIC file types and .BIN or .COD to iden tify ma chine code file types.

NextBASIC al ready un der stands a num ber of pop u lar types. Typ ing:

.associate -l

will re turn the most com monly used ones to gether with the ac tion that will be taken when
the Browser launches them.

The char ac ters * and ? are called wildcards and have a spe cial mean ing to NextZXOS.
They're used to sub sti tute ranges of char ac ters or spe cific char ac ters in file names and
fold ers. We'll see why this is par tic u larly use ful further below.

The dot char ac ter . also has a spe cial mean ing ac cord ing to how many we use. If we use
one (.) it means this folder and if we use two (..) it means the folder one level up. Keep this
in for ma tion in mind as it will prove very use ful in the ex am ples we'll encounter.

The fol low ing are some ex am ples of valid file names:

• z

• squares

• m:picture.bin

• a:fred

• 13a:hello

• 0M:CAPITALS

• file name

• test.bas

• philip

• glass.mus

• a:a.a

• c:/nextzxos/browser.cfg

• c:\nextzxos\browser.cfg

• 7:dubious

while the file names be low are il le gal and at tempt ing to use them will pro duce an er ror:

• <>-+=!& (must not contain any of these characters)

• *test (cannot contain an asterisk)

• te?st (cannot contain a question mark)

Note that in the list above we've made two as sump tions re gard ing valid file names, and
these are that drive names a: and m: are vir tual disks and the RAMdisk re spec tively. User
ar eas are ac cept able parts of file names ONLY if the drive's filesystem al lows them; oth er -
wise you will get an error.

With that in for ma tion in hand, let's start ex am in ing be low the main com mands for work ing
with files.

LOAD

LOAD as its name im plies re trieves a file from a drive and puts it (loads it) in the com puter's
mem ory. De pend ing on how it was saved (in the case of NextBASIC pro grams) or named
(in the case of ma chine code soft ware) it may also ex e cute it as well. It takes the form:

LOAD file spec [MODIFIER [op tions]]

ZX Spectrum Next – User Manual 195

LOAD Chapter 20 – NextZXOS and alternatives

where file spec is a file name as de scribed in the pre vi ous sec tion fol lowed by an op tional
MODIFIER di rec tive (SCREEN$, LAYER, CODE, DATA or BANK) which in turn may have
op tional pa ram e ters.

Re gard ing the file spec, this can be as sim ple as an empty string, how ever this has spe cial
mean ing for tapes and disk im ages. Typ ing:

LOAD ""

will pro duce an F In valid file name, 0:1 er ror. We'll re visit this promptly but first let's type:

LOAD "t:"

If you now re peat the pre vi ous com mand, you will see some thing chang ing on your
screen, with its bor der turn ing red and the rest of the screen be com ing blank. This sim ply
means that your ZX Spec trum Next is ex pect ing a tape to load! In deed, find ing a tape
deck, con nect ing it to your com puter and a ZX Spec trum pro gram on tape, in sert ing it and
press ing PLAY you will start see ing blue and yel low bars run ning down the bor der and the
pro gram even tu ally load ing. What the se ries of com mands we just typed did, is to first
switch the de fault LOAD de vice to tape (that's de noted by the drive name T:) as op posed
to the SD Card and then at tempted to load the first pro gram on the tape that it could find.
Press ing SPACE or BREAK will re turn you to NextBASIC with out load ing any thing. There is
a short cut of the pre vi ous se ries of com mands in the form of the Tape Loader op tion in the
NextZXOS Start Menu. This is also the pre ferred way of load ing tape-based soft ware on
your ZX Spec trum Next. Us ing LOAD with only a drive name as pa ram e ter will set the de -
fault drive to that drive and all file op er a tions not hav ing a drive name spec i fied in the file -
spec will assume it.

We al ready learned that file spec can be only a drive name. There is one more spe cial case
and this con cerns vir tual disks. Ob vi ously, un like what hap pens with a tape, the con cept of
the first pro gram you can find can not ex ist on a ran dom ac cess me dium like a disk, so
LOAD "" will pro duce the er ror we saw when we first at tempted it. In virtual disks however it
is pos si ble to give the command:

LOAD "*"

This will at tempt to load a spe cial file named *, or, in the ab sence of that, load a file called
DISK. As we saw ear lier, you can not use NextBASIC to name a file * as this char ac ter is a
wild card; you can how ever save a file called DISK and this will be loaded and if saved with
the ap pro pri ate SAVE op tion, will also ex e cute. You can try this by point ing the Browser to
c:/de mos/NextBASIC/ and se lect ing demo.dsk as a vir tual disk, when prompted to
mount it, se lect A and then N (when asked if you would like to Autoboot it). Then just type
the com mand above and you'll be greeted by a cheer ful Hello World message.

A bit ear lier, we dis cussed how wild card char ac ters can be use ful. We saw how it is to use
one as file spec in LOAD which as we said is re served only for vir tual disks. A vari a tion to
that which uses the * wild card is the fol low ing:

LOAD "d*"

which will at tempt to load the first NextBASIC file that starts with the let ter d. We'll re visit
wildcards fur ther be low as they're a very pow er ful tool for ma nip u lat ing files.

So far we've ex am ined LOAD with only the file spec op tion. This will load NextBASIC pro -
grams into mem ory, how ever with the op tional use of MODIFIER di rec tives, LOAD can dis -
play pic tures, re trieve long data seg ments and load ei ther code or raw data into memory.

One of the nice fa cil i ties pro vided by NextBASIC is the abil ity to store the screen as it's be -
ing dis played at a given mo ment, in or der to be loaded later and re dis played in stantly,
whether it con tains graphics, text or both. There are two (plus one) ways that this can be
achieved; first is with the use of SCREEN$ and sec ond is with the use of the LAYER mod i -

196 ZX Spectrum Next – User Manual

Chapter 20 – NextZXOS and alternatives LOAD

fi ers. Here we'll skip ahead as we have n't talked about SAVE yet but for the time be ing type
the following:

10 LAYER 0

20 INK 3: PAPER 6: PRINT

"Hello World!"

30 SAVE "test.scr" SCREEN$

and then RUN it. You will im me di ately be greeted by pur ple let ters on yel low back ground.

Now type:

CLS:LOAD "test.scr" SCREEN$

Im me di ately, the same mes sage as pre vi ously will ap pear on your screen. Now change
line 30 and re place SCREEN$ with LAYER so it reads:

30 SAVE "test.scr" LAYER

and RUN it again. Then give the fol low ing:

CLS: LOAD "test.scr" SCREEN$:PRINT AT
2,2; "Press Any Key": PAUSE 0: CLS: LOAD
"test.scr" LAYER

and press ENTER. What you will see is two con sec u tive LOADs of the same im age with an
in ter me di ate prompt to press a key. Be fore we ex plain what just hap pened, type one more
thing:

LAYER 2,1: LOAD "test.scr" SCREEN$: PAUSE
0: LAYER 2,0: LAYER 0

This will pro duce a blank screen wait ing for a keypress which when it co mes will give its
place to the screen you pre vi ously saved. Fi nally mod ify the above line slightly to be:

LAYER 2,1: LOAD "test.scr" LAYER: PAUSE
0: LAYER 2,0: LAYER 0

which will pro duce a gar bled im age and an er ror re port End of file which will dis ap pear
once you press a key. Don't for get to man u ally turn off Layer 2 af ter that com mand be -
cause due to the er ror, the com mand did not fully ex e cute. What has hap pened is that the
LAYER mod i fier at tempted to load a screen in the for mat sup ported by the cur rent layer as
set by the LAYER com mand (and then run out of data as the Layer 0 screen we saved is
mark edly smaller), while SCREEN$ ex clu sively loads screens in the for mat rec og niz able
by Layer 0; That means that for Layer 0, LOAD … SCREEN$ is func tion ally equiv a lent to
LOAD … LAYER but that does n't ap ply to the other lay ers. LOAD file spec SCREEN$ and
LOAD file spec LAYER do not store the cur rent pal ette in use. If you have n't changed the
pal ette at all and are us ing NextBASIC's stan dard colours, then you'll get the dis play you're
ex pect ing, how ever if you have changed the pal ette you may be sur prised by the un in -
tended ef fects this can pro duce. In or der to get the ac tive pal ette and store it in a file you
will need to use the ZX Spec trum Next's NextREG fa cil i ties cov ered in Chap ter 23 – IN, OUT
and the Next Reg is ters, or the very handy Save Pal ette func tion of the NMI menu cov ered
later in this chap ter. Ad di tion ally you can not load screens in the shadow ar eas of the
graphic sub sys tem. For that you will need the fol low ing LOAD mod i fier; CODE with op -
tional pa ram e ters ad dress, length. This es sen tially loads ma chine code pro grams and raw
data into mem ory ei ther in the ad dress they were saved from, or in the ad dress and length
–in bytes– we specify. Keeping with the example above, type the following:

LAYER 0: LOAD "test.scr" CODE

Once again, you'll be greeted by the cheer ful Hello World! screen we gen er ated pre vi -
ously. To ex pand a bit on this first type:

ZX Spectrum Next – User Manual 197

LOAD Chapter 20 – NextZXOS and alternatives

NEW

Af ter press ing ENTER, you'll be greeted by the NextZXOS Startup menu. Se lect NextBASIC
and re write the line above by add ing 16384,6144 at the end af ter the CODE to read:

LAYER 0: LOAD "test.scr" CODE 16384,6144

Amaz ingly, the Hello World! mes sage re ap pears but this time colour less! Add ing the two
num bers af ter CODE in structed the com puter to load the file in ad dress 16384 (which is
the start of Layer 0's graphics mem ory) but at a smaller length than the ac tual file we've
stored, re mov ing all the col our at trib ute in for ma tion. At tempt ing to set a lon ger length than
the size of the file we're load ing, the com puter will re turn an End of file, 0:1 mes sage. Note
here that do ing just that is not a good prac tice and we should be us ing LOAD BANK,
LOAD SCREEN$ and LOAD LAYER to load data into graphic memory.

As we saw in Chap ter 12, one of the most te dious as pects of pro gram ming is to pre pare
ar rays. They can in volve end less typ ing via data state ments and use a lot of pro gram
space which could oth er wise be used for ac tual pro gram logic. Thank fully NextBASIC
gives us the op tion, af ter we've pre pared an ar ray, to save it to a file to be re trieved later,
sav ing us both time and code mem ory. To load such pre pared ar rays we need to use the
LOAD mod i fier DATA. This takes the form:

LOAD file spec DATA arrayname()

to load for ex am ple the ar ray b() from Chap ter 12 as sum ing we have al ready saved it as
b-ar ray.dat we'd only need to type:

LOAD "b-array.dat" DATA b()

This would find if any other ar ray named b() was al ready stored in the com puter's mem ory,
erase it and re place it with the in for ma tion pro vided in the file.

We can only load string and float ing point ar rays. In te ger ar rays can not be loaded or
saved. Also of note is that the pa ren the ses af ter the ar ray name can not be ommited.

The fi nal LOAD mod i fier: BANK should be looked upon as a vari ant of the CODE mod i fier,
as it ba si cally loads raw data into mem ory in the bank num ber, off set in said bank and
length (in bytes) we spec ify very much like CODE does. This takes the form:

LOAD file spec BANK num ber, [off set], [length]

Keep ing with the ex am ple we have been us ing try:

LOAD "test.scr" BANK 5

will load and dis play the ex act same screen, with the main dif fer ence that it will put it in off -
set 0 of bank 5. For rea sons that will be come clear in Chap ter 24, this is ex actly the same
lo ca tion as the one we used with SCREEN$ and there fore if you slightly mod ify the com -
mand to be:

LOAD "test.scr" BANK 5, 0, 6144

as pre vi ously, the file will ap pear colour less. When us ing BANK as a LOAD mod i fier, we
need to re mem ber that NextBASIC and NextZXOS do not care what type of data is be ing
loaded. As such the BANK modifier is also used to load NextBASIC pro grams that make
the use of banks. More about that be low when we ex am ine SAVE.

SAVE

Our com puter's mem ory lacks per ma nence; what ever is stored in side it dur ing op er a tion
dis ap pears when we turn the power off. We need some means to store the in for ma tion
onto a me dium that can hold it even when the power is off; this co mes in the form of the
SAVE keyword.

198 ZX Spectrum Next – User Manual

Chapter 20 – NextZXOS and alternatives SAVE

It fol lows the ex act syn tax of LOAD that we ex am ined in the pre vi ous sec tion and uses the
same mod i fi ers and pa ram e ters with an ad di tional LINE mod i fier. There are a few dif fer -
ences from LOAD in be hav iour how ever and we'll ex am ine these immediately. Typing:

SAVE ""

will pro duce an F In valid file name, 0:1 er ror even when our de fault drive is T: (tape). That's
sim ply be cause even on a tape, files NEED to be named, oth er wise we would n't be able to
iden tify them!

As with LOAD, set ting the file spec to a drive name (for ex am ple c:) will switch all
NextBASIC file re trieval and stor age op er a tions to that drive from that point for ward so for
example:

SAVE "m:"

will make drive m: the de fault drive and won't ac tu ally store any in for ma tion any where.

As we saw in ex am ples in the pre vi ous sec tion, SAVE file spec with out a mod i fier (as sum -
ing file spec is a string spec i fy ing more than just a drive name) will save the NextBASIC pro -
gram cur rently in mem ory onto the de fault drive or the drive/folder we spec ify. If how ever
this file name al ready ex ists in the lo ca tion spec i fied, NextZXOS will first cre ate a backup file
made up from the orig i nal file name and then ap pend the type .bak to it.

We will have to skip ahead again to see the re sults of our op er a tions by us ing CAT (for
CAT a logue) so let's quickly do some typ ing:

SAVE "c:"

10 PRINT "Hello"

and then:

SAVE "hello.bas"

fol lowed by

CAT "hello*.*"

(Never mind what the *.* means, we'll ex am ine that later).
Your screen will dis play the fol low ing:

hello.bas 1K

 980M free

Now per form the save again, again fol lowed by CAT "hello*.*" and you'll see:

hello.bas 1K
hello.bas.bak 1K

 980M free

be fore we dis cuss what has hap pened, make a small mod i fi ca tion to the pro gram (for ex -
am ple add an ex cla ma tion mark af ter World on line 10 and do an other save, a bit dif fer ent
this time:

SAVE "hello"

and fol low it by CAT "hello*.*" . Now you'll see:

ZX Spectrum Next – User Manual 199

SAVE Chapter 20 – NextZXOS and alternatives

hello 1K
hello.bas 1K
hello.bas.bak 1K

 980M free

Re peat the last save com mand one more time and then do CAT "hello*.*" again. The
screen now shows:

hello 1K
hello.bak 1K
hello.bas 1K
hello.bas.bak 1K

 980M free

If you how ever, had started with a SAVE "m:" thus re di rect ing the de fault drive to the
RAMdisk, ev ery thing would have been a bit dif fer ent. First by not dis play ing a
hello.bas.bak and now af ter the en tire se ries of com mands CAT would have returned:

HELLO 1K
HELLO.BAK 1K
HELLO.BAS 1K

 59K free

so, why the dif fer ence? Let's take it from the be gin ning. We ini tially saved a NextBASIC
pro gram that was named hello.bas; then once we saved it again, the file with the same
name on the drive had a .bak type ap pended to it. Then we saved the same pro gram with
a name with out a type. In the sec ond case since we were try ing to save to a +3DOS
filesystem (the RAMdisk), NextZXOS can only use 8+3 char ac ter file names un like the FAT
filesystem that can have very long file names. So in the sec ond case, in stead of ap pend ing
the .bak type to the orig i nal hello.bas file, it stripped the .bas type and re placed it with
.bak. What fol lowed is, that we tried to save the same name with out type but now
NextZXOS had a de ci sion to make; which file name with .bak type to keep? As you could
eas ily find out by LOAD ing back the hello.bak file, the last ver sion saved is the one re -
tained. Your PRINT state ment would be the one with the ex cla ma tion mark and not the
one without.

This ex am ple, makes an im por tant point that due to the dis pa rate types of filesystems
NextZXOS can han dle, the auto backup fea ture pro vided is nice but it's not a pan a cea, so
do not rely on it ex clu sively and in stead name your files ex plic itly!

A slight vari a tion of the SAVE com mand as it deals with NextBASIC pro grams is that you
can add the LINE mod i fier with a nu mer i cal pa ram e ter af ter it. For ex am ple sav ing the pro -
gram above with:

SAVE "hello.bas" LINE 10

and then do ing

LOAD "hello.bas"

will load AND start the pro gram at line 10 which will then print Hello on your screen. As a
mat ter of fact you can use even non-ex ist ing line num bers when sav ing. LOAD will go to
the first avail able line af ter the one you en tered if that does n't ex ist in your pro gram and at -
tempt to run from there. If the line num ber you en tered is higher than the last line num ber in
your pro gram, LOAD will just not ex e cute the pro gram, just sim ply load ing it as if the LINE
mod i fier was never spec i fied. SAVE file spec LINE num ber will NOT ac cept a num ber
greater than 65535 how ever and it will re turn a B In te ger out of range, 0:1 er ror if such a
value is sup plied for num ber.

200 ZX Spectrum Next – User Manual

Chapter 20 – NextZXOS and alternatives SAVE

It is note wor thy, that a par tic u lar type is not forced upon the file when us ing SAVE, so a
NextBASIC file for ex am ple will not au to mat i cally carry the type .bas. That be ing said, as
we saw ear lier when dis cuss ing .as so ci ate, a stan dard set of types is known to the
NextZXOS browser. These, help it au to mat i cally launch files us ing the ap pro pri ate com -
mands. It is there fore a good idea to ei ther adopt these, or mod ify the ones known to
NextZXOS to be the ones you pre fer. Re mem ber how ever that ev ery time you up date Sys -
tem/Next™, the known as so ci a tions to file types are be ing over writ ten with the de fault
ones, so al ways keep a backup of the browser.cfg file lo cated in c:/nextzxos/ if you
indeed make these changes.

As we saw ear lier, stor ing screens re quires the use of ei ther the SCREEN$ (for Layer 0) or
the LAYER (for all other lay ers) mod i fier di rec tives. From our ex am ples, you may have al -
ready as sumed that the LAYER mod i fier this can also be sub sti tuted by the BANK or
CODE mod i fi ers. While this is true for Lay ers 0 and 1, there's no func tional way this can be
done for Layer 2 with CODE or BANK as the lat ter oc cu pies more than one banks and
CODE only works within the main memory map.

The most com pat i ble way to save screens is there fore the use of the LAYER mod i fier di -
rec tive as fol lows:

LAYER de sired_layer
<state ments gen er at ing graph i cal con tent>
SAVE file name.ext LAYER

Re mem ber, that you must al ready be in the layer that you in tend to save be fore ini ti at ing a
SAVE...LAYER com mand. Also as you can find from us ing .as so ci ate, NextZXOS already
re cog nises some types as be long ing to a spe cific layer screen file. The ta ble be low lists
them in order:

Type/Ex ten sion Layer

.SCR ULA (Layer 0)

.SLR LoRes (Layer 1,0)

.SHR HiRes (Layer 1,1)

.SHC HiColour (Layer 1,2)

.SL2 Layer 2

Ta ble 15 – Au to mat i cally re cog nis able screen file types

By this time and given the time we spent dis cuss ing the CODE mod i fier, you've prob a bly
fig ured out that it's not re served for ma chine code pro grams and in stead will save or load
the raw data that's lo cated in the mem ory ad dress you spec ify whether this is graphics,
ma chine code, a NextBASIC pro gram, vari ables, NextZXOS sys tem vari ables or just ran -
dom num bers or even nothing (0s).

Un like its LOAD equiv a lent, SAVE … CODE re quires both pa ram e ters, that is a le gal ad -
dress and valid length. It takes the form:

SAVE file spec CODE start_ad dress, length

where start_ad dress can be any num ber from 0 to 65535 and length any num ber from 1 to
65535 and the sum of these should not ex ceed 6553610. CODE as dis cussed works only
in the main mem ory (or rather in the main mem ory map) and for the rest of the mem ory we
should use the BANK mod i fier. The main dif fer ence is that BANK is only 16K in size thus
ac cept ing a max i mum of 16384 as off set11 and length. BANK can be used with out an off -

ZX Spectrum Next – User Manual 201

SAVE Chapter 20 – NextZXOS and alternatives

10 In reality NextBASIC, in order to retain compatibility with earlier versions of Sinclair BASIC, allows all valid integer
numbers as both address and length. If you however include a non-valid length, you cannot be certain of what you're
actually storing so make sure you verify that the locations you're storing are inside the actual memory map.

11 Using the term offset is more accurate than start address for a bank as it can move location in the memory map.
Locations within a bank always start at 0 and that's common on all banks.

set or length (but once an off set has been spec i fied, the length pa ram e ter is re quired).
Sav ing the con tents of a bank takes the form:

SAVE file spec BANK num ber, [off set, length]

For NextBASIC pro grams that make the use of mem ory banks (as we'll see in Chap ter 24),
apart from the main pro gram that can be saved with a sim ple SAVE com mand, you also
need to save all the banks that con tain parts of the pro gram. It is there fore im per a tive to
use SAVE...BANK on its own (with out off set in for ma tion) to make sure that all the
NextBASIC parts are saved. As you will also see it's good prac tice to also as sign banks
when writ ing a NextBASIC pro gram us ing vari ables so when you're load ing them back you
do not have to lit er ally as sign spe cific bank num bers as these can be re used by NextZXOS
or a ma chine code program already in memory.

We al ready saw how we can use LOAD to load ar rays into NextBASIC with out hav ing to
en ter com plex DATA state ments that have the po ten tial of mak ing our pro gram hard to
read. We SAVE ar rays by us ing the DATA mod i fier fol lowed by the ar ray name (in clud ing
pa ren the ses) we wish to store for later us age. A few things we need to note are:

We can not use a non-dimensioned ar ray in our SAVE state ment. For ex am ple if we do:

SAVE "data" DATA a()

we're more than likely to re ceive a 2 Vari able not found, 0:1 er ror. Writ ing some thing like this:

DIM a(3): SAVE "data" DATA a()

how ever will save hap pily.

An al ready dimensioned ar ray can be saved us ing a di rect NextBASIC com mand or as
part of a pro gram but a saved ar ray loaded us ing the com mand line or a di rect NextBASIC
com mand will NOT be avail able from your pro gram un less it's loaded ex plic itly from it.
Let's il lus trate this point by writ ing the fol low ing little program:

10 DIM a(30)

20 FOR f=1 TO 30

30 LET a(f) = 30-f/f

40 NEXT f

50 SAVE "data" DATA a()

RUN the pro gram and then type NEW to re start NextBASIC. Then type the fol low ing pro -
gram:

10 FOR f=1 TO 30

20 PRINT a(f)

30 NEXT f

If you RUN the pro gram you'll get a 2 Vari able not found, 20:1 er ror, de not ing that at line
20, NextBASIC has no idea what a means. Now with out eras ing the pro gram give the fol -
low ing se ries of commands:

LOAD "data" DATA a():FOR d=1 TO 30: PRINT
a(d): NEXT d

You'll get the same se ries of num bers you stored with the pre vi ous pro gram (be fore you
typed NEW) on screen. If you how ever at tempt to RUN the pro gram you just typed the 2
Vari able not found, 20:1 er ror will per sist. In or der to fix this, you will need to add the fol -
low ing line:

1 LOAD "data" DATA a()

which will pro duce the same ef fect as the di rect com mand you gave ear lier. You do not
need to DIMension the ar ray as LOAD will do that for you. It is also use ful to note that it

202 ZX Spectrum Next – User Manual

Chapter 20 – NextZXOS and alternatives SAVE

does n't mat ter which ar ray's data you saved since, when you load the same data back,
you can as sign it to any avail able ar ray. So you could the o ret i cally SAVE "data" DATA a()
and LOAD "data" DATA b(). The only thing you need to re mem ber is that the ar ray type
must match the data saved oth er wise you will re ceive a b Wrong file type, 0:1 error.

VERIFY

When stor ing data on tape, in or der to make sure what the pro gram or raw data that you've
stored is ac cu rate, NextZXOS provides NextBASIC with the VERIFY com mand. On me dia
other than a tape, VERIFY has no ef fect un less it's used in con junc tion with a drive name in
which case it will act like its LOAD and SAVE coun ter parts switch ing the de fault drive to
the one spec i fied. In ev ery case, if not used on tape (drive t:), VERIFY will re turn 0 OK 0:1.
VERIFY fol lows the same syn tax as SAVE ex cept for the LINE mod i fier. As sum ing you
have a tape deck at tached to your ZX Spec trum Next, and hav ing the Hello World! pro -
gram we typed a lit tle ear lier, save the program into tape by giving:

SAVE "t:": SAVE "hello.bas"

Now we will try to make sure that the pro gram was saved to tape prop erly by do ing the fol -
low ing:

1. Re wind the tape to just be fore the point at which you saved the pro gram.

2. Type...
VERIFY "hello.bas"

3. Play the tape. The bor der will al ter nate be tween red and cyan un til NextZXOS
finds the pro gram that you spec i fied, then you will see the same pat tern as you
did when you saved the pro gram. Dur ing the pause be tween the blocks, the
mes sage Pro gram: hello.bas will be dis played on the screen. (When
NextZXOS is search ing for some thing on tape, it dis plays the name of ev ery -
thing it co mes across). If, af ter the pat tern has ap peared, you see the re port 0
OK, then your pro gram is safely stored on tape and you can skip onto the next
sec tion, Oth er wise, some thing has gone wrong – take the fol low ing steps to
find out what.

If the pro gram name has not been dis played, then ei ther the pro gram was not saved prop -
erly in the first place, or it was but was not read back prop erly. You need to find out which
of the two is true. To see if it was saved prop erly, re wind the tape to just be fore the point at
which you saved the pro gram, then play it back while lis ten ing to your au dio output.

The red and cyan lead-in should pro duce a clear, steady high pitched note, while the blue
and yel low in for ma tion part gives a much harsher screech.

If you do not hear these noises, then the pro gram was prob a bly not saved. Check that you
were not try ing to save the pro gram onto the plas tic leader at the be gin ning of the tape.
When you have checked this, try sav ing again.

If you can hear the sounds as de scribed, then SAVE was prob a bly al right and your prob -
lem is with read ing back.

It could be that you mis typed the pro gram name when you saved it (in which case when
NextZXOS finds the pro gram on the tape, it will dis play the mis typed name on the screen).
On the other hand, per haps you mis typed the pro gram name when you ver i fied it, in which
case NextZXOS will ig nore the cor rectly saved pro gram and carry on look ing for the wrong
name, flash ing red and cyan as it goes.

If there is a gen u ine mis take on the tape, then NextZXOS will dis play an R Tape load ing er -
ror which means in this case that it failed to ver ify the pro gram. Note, that a slight fault on
the tape it self (which might be al most in au di ble with mu sic) can wreak havoc with a com -
puter pro gram. Try sav ing the pro gram again, per haps on a dif fer ent part of the tape (or a
dif fer ent tape altogether).

ZX Spectrum Next – User Manual 203

VERIFY Chapter 20 – NextZXOS and alternatives

MERGE

Many pro gram mers like to store parts of their pro grams or spe cial sub rou tines they want
to use again and again, thus build ing li brar ies of code. Nor mally a sub rou tine will be part of
a larger pro gram but what if it could be used anew on a dif fer ent kind of pro gram? Nor -
mally you would have to load the en tire pro gram into mem ory, edit out the parts you do not
need and then pro ceed to write the rest of the new pro gram only leav ing the part that you
want to re use in tact. Sim i larly, there may be some one that only wants a rou tine to be used
once into their pro gram (for ex am ple dur ing in itial is ation) and then ex change that space
for an other rou tine that per forms a com pletely dif fer ent task. The an swer to both these is -
sues is the MERGE com mand. MERGE is used in the same way as LOAD with the dif fer -
ence that it does n't clear what's in mem ory al ready and does not erase the pro gram's
vari ables and in stead only re places lines that al ready ex ist. To illustrate this point consider
this little program:

10 PRINT "Part 1"

20 PRINT "Part 2"

30 PRINT "Part 3a"

50 PRINT "Part 5"

Now save the pro gram by giv ing:

SAVE "part-a.bas"

and then give the com mand:

NEW

Af ter you re-en ter NextBASIC and type LIST you will see there's no pro gram in mem ory. At
that point type:

30 PRINT "Part 3"

40 PRINT "Part 4"

60 PRINT "Part 6"

Now save this pro gram also by giv ing:

SAVE "part-b.bas"

Fi nally load the first pro gram again by giv ing:

LOAD "part-a.bas"

and do ing LIST. What you're go ing to see is the first pro gram as you ex pected. You should
now type:

MERGE "part-b.bas"

and then type LIST. Both pro grams have mixed (merged) to gether with line 30 be ing the
newer one. If you had done the pro ce dure some what in verted, that is part-a.bas was
merged into part-b.bas then line 30 of part-a.bas would be the new est one and it would
have over writ ten line 30 of part-b.bas say ing PRINT "Part 3a" in stead of PRINT "Part 3".

Like LOAD when used on tape (drive t:), MERGE does not need a de fined file spec ac -
cept ing in stead just an empty string ("") and will just merge the next avail able pro gram. An -
other good use of MERGE is in stead of LOAD for pro grams that have been saved with the
LINE mod i fier. MERGE will just load the pro gram with out ex e cut ing it thus al low ing you to
edit in stead of try ing to use BREAK to stop ex e cu tion. MERGE will not work with CODE,
SCREEN, LAYER or BANK mod i fi ers. To partly sim u late that func tion al ity, there's a dot
com mand called .ex tract which we will visit later on. Fi nally, MERGE does not work with
ar rays (DATA).

204 ZX Spectrum Next – User Manual

Chapter 20 – NextZXOS and alternatives MERGE

Using NextZXOS

Thus far, we have ex am ined the ma jor com mands we can use to get files into the com -
puter's mem ory, as well as store the con tents of the com puter's mem ory into files but with
the ex cep tion of a slight glimpse into ru di men tary cat a logu ing of files on a drive, we do not
ac tu ally know how to man age the files. The fol low ing sec tions will cover all the fa cil i ties
pro vided for file and folder man age ment by NextZXOS, to gether with their dot com mand
equiv a lents (the lat ter work on both NextZXOS proper as well as 48K mode and some even
work on esxDOS which we'll cover at the end of this chap ter). We will also ex am ine the re -
main ing fea tures of NextZXOS as the sys tem it self does much more than sim ple file and
folder man age ment. Let's start by ex am in ing a few con cepts that are nec es sary in or der to
get a better grasp of the commands that will follow and what these do.

Wildcards

Ear lier, we touched briefly on the sub ject of wildcards. We men tioned two char ac ters *
and ?. Their mean ing is as fol lows:

* Any number of characters up to the end of the Name part of
the filename if used prior to a dot within the filespec –and–

 any number of characters remaining up to the end of the
Type part within the filespec if used after a dot in the
filespec

? Any single character

As a note to the above, it im por tant to re mem ber that the type part of a file name is re cog -
nised by NextZXOS as a valid one, only if it con sists of up to 3 char ac ters. If there are more
than 3 char ac ters it is con sid ered to be a part of the name field and the type is there fore
con sid ered blank.

You can not use more than two * within a file spec and each * must al ways be the last char -
ac ter in its re spec tive field (Name or Type) in the file spec, oth er wise a Bad File name 0:1
er ror will be re turned. Be low are some ex am ples of proper and im proper us age of
wildcards:

These will work:

. Any filename with any type
* Any filename without a type

*.? Any filename with any SINGLE LETTER type
*.??a Any filename with any type that ends in the letter a
a*.??? Any filename starting with a with any type

??a.?b? Any three letter filename ending with the letter a with a
type having a b as second letter (for example dba.dbf)

While these won't:

d. * not the last character in the Name field
.scr. * not the last character in the Name field
*.*d * not the last character in the Type field

As it's ap par ent from the ex am ples above, com bi na tions of very few char ac ters can rep re -
sent a wide ar ray of file names which is ex actly why wildcards are in valu able in man ag ing
our files.

Filesystems

We've also talked about filesystems; more spe cif i cally about FAT and IDEDOS/+3DOS but
not spe cif i cally about what these rep re sent. In a few words, a filesystem is a spe cific way
of or gan is ing in for ma tion that's lo cated on a stor age me dium. There are filesystems that
are me dium–spe cific (for ex am ple even though it does n't have a spe cific name, the way
files are stored onto tape is a filesystem in it self) and filesystems geared to ward gen eral
use. NextZXOS sup ports 3 (or rather 4) filesystems: the ZX Spec trum na tive tape

ZX Spectrum Next – User Manual 205

Using NextZXOS Chapter 20 – NextZXOS and alternatives

filesystem, +3DOS (that co mes from the ZX Spec trum +312 prin ci pally geared to wards
floppy disks), and two vari ants of the FAT filesystem, FAT16 and FAT32 (their main dif fer -
ence where NextZXOS is con cerned is ca pac ity). FAT is the de-facto stan dard filesystem
for most mod ern re mov able me dia (like the SD cards the ZX Spec trum Next uses). Each
filesystem has its pros and cons which af fects slightly the way NextZXOS op er ates. As
we've al ready noted ear lier not all fea tures are avail able on ev ery sup ported filesystem; this
ob vi ously affects some of the features we'll examine below.

IDEDOS (which co mes from the +3e) is not a filesystem in it self but a scheme that al lows
mul ti ple +3DOS "par ti tions" to oc cupy a sin gle phys i cal disk, in or der to fa cil i tate the use
of large me dia like hard disks.

Partitions

In the in tro duc tory notes and the File names sec tion, we've men tioned the term par ti tions
ei ther by them selves or in con junc tion with one of the filesystems men tioned above e.g. a
FAT par ti tion. This is a bit mis lead ing and in re al ity it's an ac cept able mash ing of two terms:
XXX filesystem type AND par ti tion – a par ti tion for mat ted with the XXX filesystem. In other
words a FAT par ti tion is a par ti tion for mat ted with the FAT filesystem (could be ei ther FAT16
or FAT32 – us ing FAT as a port man teau term is ac cept able use). But what is a par ti tion?
Noth ing more than an ar bi trary slic ing of avail able space on a stor age me dium, usu ally to
make it more man age able. An SD card for ex am ple could have one or more par ti tions and
not all of the same filesystem. Note here that NextZXOS will al ways start from the first FAT
par ti tion on the first SD card on the sys tem. If you re mem ber the ini tial dis cus sion, drives
can be as signed to par ti tions; this pro cess of as sign ing a par ti tion to a drive is called
mount ing and we will ex am ine it right af ter we briefly ex am ine stor age devices.

Storage devices and disks

For NextZXOS a stor age de vice can be phys i cal or vir tual. We use the term disk for both but
the for mer re fers to an ac tual, tan gi ble piece of hard ware like the SD Card reader your ZX
Spec trum Next is equipped with, while the lat ter is noth ing but a file con tain ing the im age
of a filesystem. NextZXOS uses a com mon set of con trols to ad dress and ac cess both
types of disks. Phys i cal disks are gen er ally –with the ex cep tion of tape– as signed a num -
ber per de vice (ie. the pri mary SD card reader and sec ond ary SD card reader have dif fer -
ent num bers) and each par ti tion on each disk (if a par ti tion ex ists) is as signed a num ber in
turn. Vir tual disks on the other hand do not have de vice num bers as they don't phys i cally
ex ist how ever both re quire a driver; that is a small pro gram that sits be tween the disk and
NextZXOS and trans lates each de vice's in di vid ual char ac ter is tics into the com mon set of
con trols that NextZXOS un der stands. That alone how ever is not enough; NextZXOS needs
to as sign a drive to each par ti tion on a disk (or in the cases of vir tual disks and the RAMdisk
to the disk it self). As it co mes with your Sys tem/Next™ dis tri bu tion; NextZXOS knows
three types of phys i cal disks: SD Cards, the RAMdisk and floppy disks and two types of vir -
tual disks: +3 floppy disk im ages and IDEDOS hard disk im ages. It also knows vir tual and
phys i cal tapes both ad dress able via the re served drive t:. Phys i cal disk de vice num bers
start at 0 and are assigned according to the table that follows:

De vice Num ber De scrip tion

0 All IDEDOS partitions on the first SD drive

1 All IDEDOS partitions on the second SD drive

2 Reserved for First Floppy Disk drive

3 Reserved for Second Floppy Disk drive

4 RAMdisk

5 All FAT partitions on the first SD drive

6 All FAT partitions on the second SD drive

Ta ble 16 – De vice Num ber as sign ments

206 ZX Spectrum Next – User Manual

Chapter 20 – NextZXOS and alternatives Partitions

12 The +3DOS filesystem is identical to the CP/M one.

On an un ex pand ed ZX Spec trum Next with an un mod i fied dis tri bu tion of NextZXOS, the
first used num ber is 4 which is the RAMdisk and the sec ond is 5 as Sys tem/Next™ co mes
on an SD card con tain ing only a sin gle FAT par ti tion. As seen on the ta ble above, de vice
num bers 2 and 3 re fer to floppy disk drives (not yet sup ported by NextZXOS).

Mounting

In or der for NextZXOS and NextBASIC to know how to ac cess a par ti tion or disk (be it phys i -
cal or vir tual) this par ti tion/disk has to be mounted. That is the pro cess where a par ti tion on
a de vice gets at tached to a drive. If freshly in stalled, NextZXOS will au to mat i cally mount
two drives; drives c: and m: the first be ing de vice 5 par ti tion 1 (in other words the Sys -
tem/Next™ dis tri bu tion's SD card plugged into the first SD reader of the sys tem) and the
sec ond one be ing de vice 4 (the RAMdisk). On an in itial ised CP/M dis tri bu tion (as we'll see
fur ther be low) one more drive will be mounted and that's drive a: (as signed to cpm-a.p3d
lo cated in side c:/nextzxos/).

Gen er ally speak ing, if there are more than one FAT par ti tions de tected on the SD card(s),
they will be au to mat i cally mapped to drives c: on wards on startup.

Fi nally, any files lo cated in side the c:/nextzxos/ di rec tory, are mapped to the ap pro pri ate
drives (if the drive in ques tion has not al ready been mapped), if they are named as fol lows
and are valid +3DOS par ti tion im ages:

 DRV-A.P3D
 DRV-B.P3D
 (…)
 DRV-P.P3D
 CPM-A.P3D
 CPM-B.P3D
 (…)
 CPM-P.P3D

Vir tual im ages named DRV-x.P3D (where x is a let ter from a to p) have pref er ence over vir -
tual im ages named CPM-x.P3D so in the pres ence of both, the DRV-x vari ant will be
mounted. Apart from the auto-mount ing pro ce dures de scribed above; we can also man u -
ally mount par ti tions and disks. This will be cov ered a bit fur ther be low at its own sec tion.
With all this in for ma tion at hand, we can now pro ceed to ex am ine NextZXOS facilities by
task.

Drive cataloguing

It's ob vi ous that sim ply re mem ber ing a file's name and LOAD ing it, is not pos si ble af ter the
first few files, so we need a com mand that can help us see which files are stored on a
drive. This com mand is CAT (from CAT a logue) and its syn tax is as follows:

CAT [-] [#n[,]] [file spec] [EXP]

where - is a switch in struct ing the file list pro duced to use the short (8+3) for mat, #n is a
NextZXOS stream for the out put of CAT to be re di rected to, file spec fol lows the con ven -
tions de scribed in the file names sec tion ear lier and the mod i fier EXP pro duces an ex -
panded list ing with more in for ma tion about the files be ing listed. All CAT pa ram e ters are
op tional and by it self CAT will pro duce a list ing of the de fault drive which can be set in the
same man ner as with LOAD, SAVE etc. Try the following:

LOAD "m:"
CAT

You will re ceive the fol low ing on your screen

No files found
 62K free

0 OK, 0:1

ZX Spectrum Next – User Manual 207

Mounting Chapter 20 – NextZXOS and alternatives

Con grat u la tions, you just listed the con tents of the RAMdisk. Sadly it's empty! Now type:

LOAD "c:"
CAT

Your dis play now will look sim i lar to this:

CORES <DIR>
DEMOS <DIR>
DOCS <DIR>
DOT <DIR>
GAMES <DIR>
MACHINES <DIR>
NEXTZXOS <DIR>
RPI <DIR>
SRC <DIR>
SYS <DIR>
TMP <DIR>
TOOLS <DIR>
LICENSE.MD 6K
README.MD 2K
TBBLUE.FW 168K
TBBLUE.TBU 465K

 1887M free

0 OK, 0:1

which is a list ing of the con tents of the root folder13 of your Sys tem/Next™ dis tri bu tion.
Now type:

CAT EXP

Your dis play now will look sim i lar to this:
CORES d---

 2019-09-02 01:01

DEMOS d---

 2019-09-02 01:01

LICENSE.MD ----

 2019-09-02 00:07 5243

README.MD ----

 2019-09-02 00:07 1427

TBBLUE.FW ----

 2019-09-02 00:07 172032

TBBLUE.TBU ----

 2019-09-02 00:07 475648

You can im me di ately no tice two things: First the ad di tion of a col umn made from four char -
ac ters at the rightmost side of the screen and sec ondly that ev ery en try now oc cu pies two
lines with the sec ond con tain ing a date, a time and a num ber (not in all cases). Let's start
from the sec ond line. Two types of in for ma tion is avail able there; when the file or folder was
cre ated and what's its size (in bytes). The first line is the file it self (or the folder) while the
rightmost col umn de scribes the file's at trib utes. The d you can see in some en tries is the di -
rec tory at trib ute which des ig nates a folder. Fold ers as far as the filesystem is con cerned are
spe cial files with out size. In the shorter form of CAT we saw pre vi ously, this is dis played as
<DIR>. There are many more at trib utes to ex am ine which we will look at later.

208 ZX Spectrum Next – User Manual

Chapter 20 – NextZXOS and alternatives Drive cataloguing

13 In filesystems other than IDEDOS and +3DOS that use User Areas, files are organised in an inverted virtual tree of
sorts, contained in folders like branches on a trunk of a tree which in turn contain smaller branches and so forth. The
top level of the tree is called the root folder or root directory.

You may have no ticed that the dis play gets very clut tered when us ing the EXP mod i fier es -
pe cially if there are a lot of files with long names as the screen nor mally fits only 32 col -
umns. If you fol low the note in the be gin ning of this chap ter and use 64 or 85 col umn
modes. you'll see the sit u a tion im proves. Switch to 64 col umn or 85 col umn mode, re run
CAT EXP and you will get some thing sim i lar to this:

Sim i larly, the out put will be even more pleas ant at 64 col umns:

It's ev i dent that the col umns are re ally 4 and they only get bro ken down in two lines in or der
to fit. Let's now ex am ine the use of the – switch. If you type:

CAT -

Your dis play now will look sim i lar to this:

CORES . <DIR>
DEMOS . <DIR>
DOCS . <DIR>
DOT . <DIR>
GAMES . <DIR>
MACHINES. <DIR>
NEXTZXOS. <DIR>
RPI . <DIR>
SRC . <DIR>
SYS . <DIR>
TMP . <DIR>
TOOLS . <DIR>
LICENSE .MD 6K

ZX Spectrum Next – User Manual 209

Drive cataloguing Chapter 20 – NextZXOS and alternatives

Fig. 27 – CAT EXP output in 85 columns

Fig. 28 – CAT EXP output in 64 columns

README .MD 2K
TBBLUE .FW 168K
TBBLUE .TBU 465K

 1887M free

0 OK, 0:1

As you can see, file names are now clearly sep a rated at the 9th char ac ter by a dot fol lowed
by a 3 let ter type. In or der to dem on strate what hap pens with a larger file name we could
write a sim ple pro gram and save it as follows:

10 PRINT "Hello World"

SAVE "This Is A Hello World Program.bas"

Then try both CAT and CAT - as fol lows:

CAT - "th*.bas": CAT "th*.bas"

(Here we're also dem on strat ing the use of wildcards for the first time). Your dis play will
then be:

THISIS~1.BAS 1K

 1887M free
This Is A Hello World Program.ba
s 1K

 1887M free

0 OK, 0:1

you'll no tice that the long file name This Is A Hello World Pro gram.bas got trun cated to its
first 6 char ac ters af ter trim ming all space char ac ters fol lowed by a tilde ~ char ac ter and
the num ber 1. This is to help dif fer en ti ate from other files with long file names that look alike
in the first 8 char ac ters of their file name (omit ting spaces). To dem on strate this, type:

SAVE "This Is A Hello United Kingdom
Program.bas"

and

SAVE "This Is A.bas"

fol lowed by

CAT - "th*.bas"

The re sult ing dis play will now be:

THISIS~1.BAS 1K
THISIS~2.BAS 1K
THISISA .BAS 1K

 1887M free

0 OK, 0:1

As you can see a ~2 was added to the This Is A Hello United King dom Pro gram.bas file -
name when it was short ened oth er wise you could n't dif fer en ti ate it from the This Is A Hello
World Pro gram.bas as they both share the same start ing char ac ters. As a mat ter of fact
NextZXOS when faced with a lot of sim i lar file names will keep add ing con sec u tive num -

210 ZX Spectrum Next – User Manual

Chapter 20 – NextZXOS and alternatives Drive cataloguing

bers trun cat ing the orig i nal file name fur ther un til all the files are dis played in short for mat. If
you now use CAT with EXP you'll get to see a num ber of things. First, if you don't have a
Real Time Clock mod ule in stalled, you will see that all the files you just saved have the
same date and time on them and sec ondly that in the sec ond col umn, the sec ond char ac -
ter from the left has turned into a from a sin gle dash (-). This sig ni fies that the ar chive at trib -
ute has been set. CAT be comes more pow er ful with the use of wildcards, al low ing us to
get a list of only the files we're in ter ested in, omit ting all others that may clutter our display.
For example:

CAT "*.tap"

will show us all the .tap for mat tape im age files, we have stored in the cur rent drive and
folder.

Thus far we have only dis played the abil ity to list files con tained within the cur rent drive and
folder, how ever CAT can dis play files in dif fer ent drives, fold ers, user ar eas or a com bi na -
tion of the above (when the com bi na tion is sup ported by the filesystem of the drive). We
can in struct CAT to pro duce list ings of files and fold ers in side drives other than our cur rent
drive or folder or even user area with out hav ing to change our de fault file spec to that spe -
cific area. We'll cover the sub ject of chang ing the de fault file spec shortly so for now here
are some examples:
CAT "m:" Displays a list of all files in drive m:
CAT "2m:" Displays a list of all files in user area 2 of drive m:
CAT "2m:*.bas" Displays a list of all files ending in .bas in user area 2 of

drive m:
CAT "c:/nextzxos/" Displays the contents of folder nextzxos found on drive c:
CAT "c:/nextzxos/e*.*" Displays all files whose filename starts with the letter e in the

folder nextzxos on drive c:

CAT has two aliases in NextBASIC: DIR and LS. Both fol low the ex act same syn tax so all
the above ap plies to them. There are also two dot com mands .ls and .lstap which are
avail able on both NextZXOS proper and the 48K Ba sic mode avail able from the Startup
menu. They rep li cate CAT and the com bi na tion of .tapein14 and CAT "t:" re spec tively. .ls
has a lot more op tions avail able than CAT which can be seen once you type:

.ls --help

which will give you about 3 screens full of avail able op tions! For most pur poses how ever it
is used in the same man ner as CAT file spec-wise. .ls does not re quire the file spec to be
en closed in dou ble quotes if there is no drive spec i fied (drives con tain co lon char ac ters
and both Sinclair as well as NextBASIC con sider this as a state ment sep a ra tor and will
com plain). One ma jor dif fer ence in the way .ls dis plays the files ver sus how CAT dis plays
the files is that it uses the short for mat; ie. it's closer to giv ing CAT - than just plain CAT.
Sim i larly, .lstap pro vides ex tra in for ma tion than CAT "t:" pro vides as you will see by giving:

.lstap --help

.lstap is par tic u larly use ful in 48K Ba sic mode as there is no CAT "t:" equiv a lent in that ver -
sion.

Drive, Folder and User Area navigation and management

One of the ma jor fea tures of any op er at ing sys tem such as NextZXOS is the or gani sa tion
and man age ment of files within the ca pa bil i ties of its sup ported filesystems. In ear lier
times, such as when the pre de ces sor mod els of the ZX Spec trum Next were first avail able,
file stor age needs were not as press ing as they are today.

Stor age me dia could n't re ally hold a lot of in for ma tion and even pro gram sizes were tai -
lored to the mem ory avail able to the com put ers of the era. Op er at ing sys tems in other
words, were n't re ally needed un less one had very im por tant busi ness files to man age. As

ZX Spectrum Next – User Manual 211

Drive, Folder and User Area navigation and management Chapter 20 – NextZXOS and alternatives

14 .tapein is a dot command utility that lets NextZXOS assign a virtual tape image to the t: drive instead of the real tape

time went on and com puter ca pa bil i ties grew, the few files that could fit on a tape or a
microdrive car tridge be came the tens that could fit on a floppy disk while to day with the
ca pac i ties of stor age me dia sky rock et ing we have to man age tens or even hun dreds of
thou sands of files. Com pare a microdrive car tridge that held 90 KBytes of data which was
a mas sive ca pac ity for the times, to your Sys tem/Next™ dis tri bu tion that can hold 11
million times as much.

Early on, once the first disk based sys tems be came avail able, the need to or gan ise files in
a more log i cal way was re cog nised and the first type of group ing of files was real ised in
the form of 16 user ar eas (num bered from 0 to 15). User ar eas served other needs as well
but for a ma chine like the ZX Spec trum +3 that in tro duced it to the ZX Spec trum line, it was
a means to gather to gether files. User ar eas are more than ad e quate for lim ited ca pac ity
stor age me dia but wholly in ad e quate for larger me dia like the multi-mega byte hard drives
that followed.

To that ef fect the con cept of a folder (also known as a di rec tory) was in tro duced which in
it self can hold other fold ers in a nested or gani sa tional chain. This struc ture is called a di -
rec tory tree (it's re ally an in verted tree with the root of it sit ting at the top).

The FAT filesystem used on your Sys tem/Next™ dis tri bu tion is a prime ex am ple of that or -
gani sa tion. It's ob vi ous that with fold ers be ing nested, con stantly writ ing com mands like
SAVE or LOAD that in cludes the length of any num ber of fold ers in ad di tion to the file's
name it self can be very co pi ous. To that ef fect apart from the com mands that deal with the
cre ation and de le tion of fold ers, NextZXOS pro vides us with com mands to nav i gate the
filesystem's di rec tory tree. The filesystem nav i ga tion and management commands are:

MKDIR

MKDIR (for MaKe DI Rec tory) cre ates a folder on a drive that sup ports it. It's syn tax is as
fol lows:

MKDIR file spec

where file spec fol lows the syn tax al ready dis cussed in the File names sec tion of this chap -
ter us ing the first two parts that make up a file name: Drive and Folder. In the ab sence of a
drive and an ini tial folder sep a ra tor char ac ter, the folder you're cre at ing will be cre ated un -
der the cur rent folder and drive you've set. You can mix the folder sep a ra tors \ and / with out
a prob lem when struc tur ing the file spec. An at tempt to cre ate a folder with MKDIR in a
filesystem that does n't sup port it will re port a Non Im ple mented, 0:1 error.

If you are us ing MKDIR with a depth of fold ers greater than one, the folder name you're us -
ing must al ready ex ist oth er wise you will re ceive an In valid path, 0:1 er ror. Here are some
ex am ples to il lus trate:

MKDIR "/codes" Cre ates a folder named codes un der the cur rent drive's root
folder.

MKDIR "/codes/codes" Cre ates a subfolder named codes un der the cur rent drive's
root folder in side the codes folder. If there is no folder named
codes un der the root folder, the com mand will fail.

MKDIR "d:/test" Cre ates a folder named test un der the d: drive's root folder
MKDIR "d:test" Cre ates a subfolder un der the d: drive's last changed-to

folder.

The last ex am ple is very in ter est ing as it in tro duces the con cept of cur rent folder per drive.
In deed, NextZXOS main tains a list of which folder was last changed to on each drive and
will switch you to that if you don't ex plic itly de fine a full pathname and only a drive. This will
be come very use ful when copy ing as we will see later on.

There is a dot com mand equiv a lent of MKDIR, which shares its name apart from the dot
pre fix: .mkdir. It ac cepts two more, mu tu ally ex clu sive op tions over MKDIR: --ver bose and
--help oth er wise it's syn tac ti cally the same. As with most dot com mands if there's no drive
in side the file spec the dou ble quotes en clos ing it are optional.

212 ZX Spectrum Next – User Manual

Chapter 20 – NextZXOS and alternatives MKDIR

RMDIR

RMDIR (for Re Move DI Rec tory) re moves an empty folder from a drive that sup ports fold -
ers. Its syn tax is as fol lows:

RMDIR file spec

where file spec is as dis cussed in MKDIR above. RMDIR pro tects you from ac ci den tal de -
le tion of files that can be con tained within the folder by re turn ing a Dir full, 0:1 er ror if even
one file or an other folder is con tained within. You will need to first re move all the files and
subfolders lo cated in side the folder be fore RMDIR al lows you to re move the folder.
Wildcards do not work with RMDIR; you can not use RMDIR "*" and ex pect to re move all
fold ers un der the lo ca tion you are in. Any at tempt to do so, will re turn a Bad file name, 0:1
error.

Fi nally, if you at tempt to use RMDIR with a folder that does n't ex ist, you will re ceive a an In -
valid path, 0:1 er ror.

.rmdir is RMDIR's dot com mand equiv a lent. It is a bit more de struc tive than RMDIR as it
al lows the de le tion of par ent fold ers with the ad di tion of op tional switch --par ents, how -
ever, it too, checks for data in side the fold ers slated for de le tion and will re turn an er ror if
data ex ists. With the ex cep tion of the op tional switches --par ents and --help, syn tax for
both RMDIR and .rmdir is the same.

CD

CD (for Change Di rec tory) changes the cur rent drive and/or folder (for drives that sup port
fold ers) or cur rent drive (for drives that do not). CD's syn tax is as fol lows:

CD file spec

where file spec con sists of ei ther one or two of the first two parts of a file name (Drive and
Folder) for filesystems that sup port fold ers (FAT16, FAT32) or of just the Drive for
filesystems that do not (+3DOS, IDEDOS). Set ting just the cur rent drive with CD is func -
tion ally equiv a lent to us ing SAVE, LOAD etc with just the drive as the file spec. Un like fold -
ers, there is no way of set ting a user area as the de fault one so if you need to ad dress it you
must do so ex plic itly through the file spec; for ex am ple add a 3m: pre fix to file names for
files in the user area 3 of drive m:. CD works with wildcards by match ing to the first folder in
or der it finds them and change to that.

CD also ac cepts three file spec short cuts: . (sin gle dot), .. (dou ble dot) and one of the fol -
low ing / or \ (for ward or back ward slash). As we men tioned ear lier in the chap ter, sin gle
dot means: This folder, dou ble dot means: The folder one level up and ei ther slash on their
own means: The root folder of the cur rent drive. Sin gle and dou ble dot en tries do not ex ist
on the root folder and there fore you can not use the short cuts there.

Us ing a com bi na tion of the dou ble dot and slash short cuts, CD can also eas ily tra verse
the folder tree hor i zon tally at the same level with out hav ing to write the en tire path that pre -
cedes the level you're cur rently in. Ob vi ously that does n't make sense at the first level un -
der the root as it would in volve much more typ ing than the slash char ac ter alone but it
works nonetheless!

ZX Spectrum Next – User Manual 213

RMDIR Chapter 20 – NextZXOS and alternatives

As sum ing a struc ture like the one in your Sys tem/Next™ dis tri bu tion as partly dis played in
the fig ure be low, lets pro vide some ex am ples of hor i zon tal and ver ti cal nav i ga tion.

Let's agree that we're lo cated in the / of drive c: and we want to first go to c:/docs/cpm and
then go to c:/docs/ex tra-hw be fore re turn ing to / again.

We could use one of the fol low ing se quences:

CD "docs"
CD "cpm"

and then

CD ".."
CD "extra-hw"

and fi nally

CD ".."
CD ".."

or al ter na tively:

CD "c:/docs/cpm"
CD "c:/docs/extra-hw"
CD ".."
CD ".."

How ever it's much less typ ing to just do:

CD "/docs/cpm"
CD "../extra-hw"
CD "/"

It's easy to see that the nav i ga tional short cuts are quicker. The dot com mand equiv a lent of
CD is .cd with the op tional switch --ver bose which per forms the func tions of both CD and
PWD (see be low) in or der. A small de vi a tion from the syn tax of CD is that it al lows spe cific
short cuts to nav i gate quickly to the top folder of a deeply nested hierarchy.

These are:

.cd ... Functionally equivalent to two successive CD ".." commands
.cd Functionally equivalent to three successive CD ".." commands
.cd Functionally equivalent to four successive CD ".." commands

214 ZX Spectrum Next – User Manual

Chapter 20 – NextZXOS and alternatives CD

Fig. 29 – Folder tree navigation

PWD

PWD (for Print Work ing Di rec tory) prints the cur rent drive and folder to the screen or an op -
tional stream num ber. PWD's syn tax is as fol lows:

PWD [#n]

In a NextZXOS con text PWD is very use ful, how ever you can not as sign its out put to a
NextBASIC vari able that eas ily for use in side our pro grams. In or der to do that, one should
be a lit tle cre ative (skip ping ahead to the next chap ter) and use the op tional stream pa ram -
e ter in a man ner iden ti cal to the trick we used to get time from our RTC back in Chap ter 18.
Type:

DIM d$(255):OPEN #2,"v>d$":PWD #2:CLOSE
#2: PRINT d$

with which we de fine a fixed size string vari able d$, then open stream 2 and as sign it to
chan nel V which re di rects its out put to d$. We then in voke PWD with out put re di rec tion to
stream 2 which in es sence takes its nor mal screen out put and via chan nel v sends it to d$,
be fore clos ing the stream and print ing d$. We did ex actly what PWD would do nor mally
(that is print the work ing di rec tory on the screen) but also man aged to store it in a variable
for use later.

PWD does n't have a dot com mand equiv a lent with the same name. In stead you only need
to use .cd --ver bose with out a file spec. The ex am ple above there fore becomes:

DIM d$(255):OPEN #2,"v>d$":.cd --verbose:
CLOSE #2: PRINT d$

You may no tice that there's no stream de fined af ter .cd --ver bose and that's be cause you
don't need it as stream #2 is the screen any way! It's ob vi ous that the same ap plies to PWD
above but PWD does of fer the abil ity to re di rect to a stream and that il lus trated that fact
quite nicely. As a mat ter of fact, you can com pletely omit the stream from the PWD state -
ment in the pre vi ous ex am ple and it will func tion in the same man ner; you will see why in
the next chapter.

Managing files and their attributes

In our ex am ples in this chap ter we have man aged to clut ter our drives with lots of cop ies of
the same pro grams. This may be de sir able at times but some times we may want to keep
slightly al tered ver sions of the same pro gram in dif fer ent places (for ex am ple to keep a
type of ver sion his tory) but we may not have the or gani sa tion of the fold ers we'll store the
files in when we start working.

Other times we may want to get rid of some files we've cre ated for any num ber of rea sons,
or re name a file from a throw away name like for ex am ple test.bas to some thing more
mean ing ful and fi nally we may want to move some files from one place to an other when
done with them. NextZXOS pro vides us with all these fa cil i ties in the form of the COPY,
ERASE and MOVE com mands and their dot com mand equiv a lents .cp, .rm and .mv.

We'll ex am ine these be low and ad di tion ally find how to mod ify file at trib utes (what is dis -
played as the sec ond col umn in the CAT EXP com mand's out put) again via a spe cial ver -
sion of MOVE and its dot com mand al ter na tive .chmod. There is one more func tion
pro vided by NextZXOS in re gards to files and that's di rectly ac cess ing its con tents. This
how ever re quires the use of Chan nels and Streams and is there fore covered in the next
chapter.

COPY

COPY does as its name im plies; Cop ies a file from a lo ca tion to an other lo ca tion. Its syn -
tax is quite sim ple:

COPY source TO des ti na tion

ZX Spectrum Next – User Manual 215

PWD Chapter 20 – NextZXOS and alternatives

A few notes, re gard ing the dif fer ences be tween source and des ti na tion pa ram e ters are:

First and most im por tantly, source can use wildcards while des ti na tion can not. In other
words you can write:

COPY "c:*.bas" TO "m:"

but you can not write:

COPY "c:*.bas" TO "m:*.bas"

or

COPY "c:*.bas" TO "m:\a*.bas"

as any at tempt to do so will gen er ate a Des ti na tion can not be wild, 0:1 er ror.

Sec ondly, copy ing files be tween filesystems with dif fer ent ca pa bil i ties will per form some
form of trans la tion to the file names. To give an ex am ple with two files named
raycaster.bas (lon ger than 11 char ac ters) and ..later.bas (start ing with two dots) on drive
c: doing:

COPY "c:*.bas" TO "m:"

will change the file names to raycas~1.bas and later.bas as the RAMdisk is a +3DOS
drive and as such ac cepts only 8+3 file names.

Thirdly, the des ti na tion is not checked for if the files be ing cop ied al ready ex ist. So if you
per form the above op er a tion twice, each time COPY will re place the files on the des ti na -
tion with out cre at ing backup files ex cept if the file named the same in the des ti na tion has
the pro tected at trib ute set. To dem on strate let's skip a bit ahead and in tro duce you to an
at trib ute set ting command. Type the following:

COPY "c:/nextzxos/pisid.*" TO "m:"
MOVE "m:PISID.BAS" TO "+p"
COPY "c:/nextzxos/pisid.*" TO "m:"

The first COPY op er a tion will suc ceed while the sec ond COPY op er a tion will fail. In the
case of a mass COPY if the op er a tion fails for any file, it will fail for all re main ing files, so
keep that in mind.

COPY does not work be tween a disk and a tape; do ing for ex am ple:

.tapeout "test.tap"
COPY "m:*.bas" TO "t:"

will fail with a Des ti na tion must be path, 0:1 er ror. Note above the use of the .tapeout dot
com mand which we will cover later on; it just al lows us to sub sti tute a tape im age file for an
ac tual tape. To per form the above func tion we will need to do the following:

.tapeout "test.tap"
LOAD "m:hello.bas"
SAVE "t:hello.bas"

and ver ify the out put with .lstap we cov ered ear lier:

.lstap "hello.tap"

(or al ter na tively not use .tapeout and .lstap at all and save onto an ac tual tape, in which
case we'd use VERIFY to check if the file was ac tu ally writ ten)

There is a spe cial ver sion of COPY where the source file is stripped of all con trol codes,
just main tain ing End-Of-Line char ac ters (CR, LF or the com bi na tion of both – See Ap pen -
dix A for all Con trol Codes). It ex ists as ei ther short cuts SCREEN$ and LPRINT in lieu of
des ti na tion -or- as any stream that can be at tached to a chan nel. The SCREEN$ short cut
216 ZX Spectrum Next – User Manual

Chapter 20 – NextZXOS and alternatives COPY

gets any file and prints it on screen while the LPRINT short cut gets any file and sends it to
a ZX Printer or com pat i ble. A good way to test the func tion al ity is to check some of the
doc u ments in c:/docs. For ex am ple to see the pinouts of the Next board you can type:

COPY "c:/docs/extra-hw/pinouts/pin*.txt"
TO SCREEN$

while if you do:

COPY "c:/docs/extra-hw/pinouts/pin*.txt"
TO LPRINT

the file will be sent straight to the printer! SCREEN$ and LPRINT are short cuts for their re -
spec tive streams (as you will see in the next chap ter). Al though there are no short cut
keywords for other streams, if the des ti na tion is set to any stream, COPY's be hav iour will
be iden ti cal to what we just saw.

The dot com mand equiv a lent for COPY is .cp and its syn tax is sim i lar with the ex cep tion of
the --force switch which al lows over writ ing of files with out prompt. .cp CANNOT cur rently
ad dress +3DOS/IDEDOS drives so it should be only used on FAT par ti tions on the SD
Card.

ERASE

Files can be de leted from a drive us ing the ERASE com mand. Its syn tax is as sim ple as
one would imag ine:

ERASE file spec

where file spec fol lows the same con ven tions as CAT mean ing that just like CAT, you can
use the wildcards * and ? to iden tify a group of files, or you can spec ify the file name in full
(in clud ing op tional Drive and/or User Area and Path) if you only want to get rid of one par -
tic u lar file. ERASE of fers you some form of pro tec tion if your file spec con tains wildcards in
the form of a ques tion in which you will have to an swer with a Y on the key board to con -
tinue or with N to stop, but of fers no pro tec tion if you spec ify a sin gle file name, which will
im me di ately be erased from the drive – so ex er cise cau tion! If, for ex am ple, you wanted to
de lete a file from drive m: called FRED.BAS, you would use:

ERASE "m:fred.bas"

If drive m: has al ready been set as the de fault drive (by ei ther us ing SAVE, LOAD... or even
CD), then you don't need to in clude the m: at the start of the file name. It does n't hurt to in -
clude the drive any way, and with as pow er ful a com mand as ERASE is, you might feel
safer if you do. To erase all the files on drive d: you would use:

ERASE "d:*.*"

Be fore do ing this, NextZXOS will ask for con fir ma tion by print ing

Erase d:*.* ? (Y/N)

on the bot tom of the screen and as sum ing that you re ally mean to wipe all the files from
the disk in drive d:, you would then type Y.

If you at tempt to de lete a sin gle file (or a group of files us ing wildcards) while there are no
files on the drive that match the file spec a File not found er ror will be dis played.

The dot com mand equiv a lent to ERASE is called .rm (from re move) and its syn tax fol lows
that of ERASE with the ex cep tion of two switches namely --ver bose and --help.
MOVE

MOVE is a very pow er ful com mand. It per forms a to tal of five func tions: mov ing and re -
nam ing files, chang ing file at trib utes and man u ally mount ing and dis mount ing drives.

ZX Spectrum Next – User Manual 217

ERASE Chapter 20 – NextZXOS and alternatives

Since there are sep a rate sec tions for the last three func tions; we'll cover only the first two
here. For mov ing and re nam ing, MOVE's syntax is:

MOVE source_file spec TO des ti na tion_file spec

where source_file spec and des ti na tion_file spec fol low ev ery thing dis cussed in the File -
names sec tion ear lier with the fol low ing con sid er ations:

• You cannot use wildcards in either the source or the destination. This means
that both source and destination have to be complete filenames.

• You cannot perform a MOVE operation between drives

Let's ex am ine what will hap pen in the first case. As sum ing you have 3 NextBASIC files,
named HELLO1.BAS, HELLO2.BAS and HELLO3.BAS in drive m: (in the de fault User
Area 0) and you want to move them to User Area 1, typ ing as you would prob a bly expect:

MOVE "*.bas" TO "1:"

will fail with Bad File name, 0:1. To per form this you should ac tu ally do:

COPY "*.bas" TO "1:"

fol lowed by

ERASE "*.bas"

In the sec ond case (and since we now learned our les son we won't be us ing wildcards) at -
tempt ing to MOVE one file be tween drives like so:

MOVE "c:/test.bas" TO "d:/test.bas"

will fail with No re name be tween drives, 0:1. To per form this you should ac tu ally do like
above:

COPY "c:/test.bas" TO "d:/"
ERASE "c:/test.bas"

As you prob a bly have al ready fig ured out, mov ing and re nam ing files is ba si cally the same
pro ce dure and since we have to write an en tire file name in both source and des ti na tion we
can change it at the same time!

MOVE "hello1.bas" TO "c:/bak/hello.bak"

both moves lo ca tions and re names hello1.bas.

Imag ine we have saved a file called FRED, and then af ter work ing on it and sav ing a new
ver sion with the same name, real ised that we had made a ter ri ble mis take and would like
to re cover the last ver sion. This would be pos si ble us ing the commands:

ERASE "fred"
MOVE "fred.bak" TO "fred"

If a file you're mov ing or re nam ing al ready ex ists (or rather an other file with the same
name) at the in tended des ti na tion, MOVE will fail with an Al ready ex ists, 0:1 error.

MOVE's dot com mand al ter na tive is .mv and un like other dot com mand al ter na tives we've
ex am ined so far, its re nam ing and mov ing ca pa bil i ties far ex ceed those of MOVE's. It al -
lows op er a tions across dif fer ent drives, in ter ac tive or au to matic over writ ing of al ready ex -
ist ing files as well as the full use of wildcards. It's syntax is:

.mv [OPTION] [-T] source des ti na tion –or–

.mv [OPTION] source DIR –or–

.mv [OPTION] -t DIR source

218 ZX Spectrum Next – User Manual

Chapter 20 – NextZXOS and alternatives MOVE

Where source and des ti na tion can be any valid NextZXOS file spec (in clud ing wildcards)
and DIR is any valid folder . Source or Des ti na tion filespecs with trail ing slash char ac ters (/
or \) are con sid ered to be fold ers. As .mv has nu mer ous op tions, they are listed in the ta -
ble be low to help you better un der stand what it can do. In gen eral when you have a large
quan tity of files to be moved or re named it's better to use .mv over MOVE.

Op tion Alt Op tion Syn tax De scrip tion Notes

-b Makes backup of existing destination

-f --force Do not prompt for overwrite Of these three options,
the last in order is the
one that takes effect

-i --interactive Prompt for overwrite

-n --no-clobber Do not overwrite

--strip-trailing-slashes Remove slashes from names

-S --suffix=SUFFIX Override default backup suffix with SUFFIX

--system Match system files to source

-t DIR --target-directory=DIR Move everything in source to folder DIR

-T --no-target-directory Treat destination as a normal file

-u --update
Move only if source is newer than destination

or destination doesn't exist

-v --verbose Explain what is being done

-h --help Prints this list of options

-v --version Prints the version of .rm and exits

Ta ble 17 – .rm op tions

File attributes

As men tioned in the pre vi ous sec tion, MOVE has an other use be sides re nam ing and
mov ing files and that is to change a file's at trib utes. At trib utes are bits of in for ma tion as so -
ci ated with a file that tell you (and the com puter) a lit tle more about it. You al ready saw in
the CAT EXP and ERASE ex am ples how at trib utes ap pear to you and how they can af fect
your files. There are three at trib utes that can be changed plus one more that is au to mat i -
cally man aged: write pro tec tion, sys tem sta tus and ar chive. The most use ful at trib ute is, as
we've seen al ready, write pro tec tion. Once a file's write pro tec tion at trib ute has been set, it
will not be pos si ble to erase it (or save a file with the same name) until you remove it.

MOVE's syn tax for at trib ute chang ing is a bit dif fer ent from the one used for re nam -
ing/mov ing:

MOVE file spec TO +/-at trib ute

Where file spec CAN in clude wildcards un like the pre vi ous case, and at trib ute is one of the
fol low ing let ters: p, a and s used with ei ther a + or - pre fix. The pre fix serves as a set (for +)
and unset/clear (for -). p is short for pro tec tion, a is short for ar chive and s is short for sys -
tem.

Write pro tec tion is the most use ful at trib ute for NextZXOS. Try:

MOVE "hello.bas" to "+p"

If you now try:

ERASE "hello.bas"

ERASE will fail with a File is read only er ror.

To switch write pro tec tion off type:

MOVE "hello.bas" TO "-p"

and you'll be able to erase the file as be fore.

ZX Spectrum Next – User Manual 219

File attributes Chapter 20 – NextZXOS and alternatives

As men tioned, we can use wildcards when chang ing at trib utes. As an ex am ple, to make
all the files on drive m: write pro tected, you would type:

MOVE "m:*.*" to "+p"

As al ways, the drive let ter can be omit ted if it is the cur rent de fault drive.

You can re peat edly switch at trib utes on or off with out caus ing an er ror, so if you set write
pro tect on a file that has al ready got write pro tec tion, it will just stay pro tected.

The sec ond at trib ute we men tioned is the sys tem sta tus at trib ute. This is re ally pro vided
just to be com pat i ble with other CP/M based com put ers, how ever, if you do set a file's sys -
tem at trib ute to on, you will see that the file no lon ger ap pears in the list when do ing a nor -
mal CAT. It will ap pear how ever when us ing CAT EXP with an s marked in the sec ond
col umn and when us ing .ls. Try the following:

MOVE "hello.bas" TO "+s"
CAT
CAT EXP
LOAD "hello.bas": RUN

As you can see hello.bas be came in vis i ble to CAT but you can still LOAD it prop erly if you
know its name. Bear in mind that you can not have two files on the same disk with the same
file name and dif fer ent sys tem sta tus at trib utes; so if you try to cre ate or copy a file onto a
disk where a file of that al ready ex ists (but is hid den from CAT), then the pre vi ous file will
be de leted, un less of course its write pro tect at trib ute is set.

The fi nal at trib ute you can change is known as the ar chive at trib ute. In an ex panded cat a -
logue, it shows up as a. On other sys tems the ar chive bit is cleared when a copy op er a tion
has been per formed, but that does n't hap pen on NextZXOS. NextZXOS au to mat i cally sets
the ar chive bit when sav ing on a FAT driver but does n't do so on IDEDOS/+3DOS drives.
It is there fore of no prac ti cal use and is only pro vided for file compatibility with CP/M.

If you try to use any let ter other than a, s or p in set ting or re set ting at trib utes, or if the at trib -
ute op tion string is not two char ac ters long, then you will re ceive an In valid at trib ute error.

The dot com mand that han dles at trib utes is .chmod and has a bit of a dif fer ent syn tax than
MOVE as it ac cepts four at trib utes r, h, s and a, for read-only, hid den, sys tem and ar chive.
The first is in es sence the same as p for MOVE while h does n't ex ist on NextZXOS (set ting
the sys tem at trib ute makes it also hid den by de fault) but it does ex ist as an at trib ute on
FAT drives. Trying:

.chmod TBBLUE.FW -h

you will see that noth ing has changed when do ing CAT EXP. If you how ever take your SD
Card to a PC, you will be able to see the file again there.

The RAMdisk

You may have been won der ing what point there is in stor ing in for ma tion in the RAMdisk
(m:) as it will be lost once the ZX Spec trum Next is switched off. Well, per haps its most ob -
vi ous use is to store chunks of NextBASIC pro gram (or rou tines) which can be merged (us -
ing MERGE "m:file name") into a smaller pro gram, in se quence. This makes it pos si ble to
write about 90K of NextBASIC code, and hold it in the ma chine, with out go ing into the
more com pli cated BANK com mands. An other lit tle less ob vi ous use is to store tem po rary
files there that won't be needed when your pro gram fin ishes. Mem ory is the fast est me -
dium on your ZX Spec trum Next and quick access to files may be beneficial.

As we saw in Chap ter 18, one of the more in ter est ing uses of the RAMdisk is in an i ma tion,
where a se ries of pic tures can be de fined by a slow NextBASIC pro gram, stored in drive
m:, then called back to the screen at high speed. Ob vi ously BANK is still the pre ferred way
to do it, but for quick jobs that use Layer 0 it's a quick and easy method!

220 ZX Spectrum Next – User Manual

Chapter 20 – NextZXOS and alternatives The RAMdisk

Drive and Partition Management

We've talked about phys i cal de vices and vir tual de vices; we've also talked about the
automounting fea tures of NextZXOS but we have n't truly ex plored how the sys tem man -
ages stor age de vices and as signs them to drives. NextZXOS pro vides us with four com -
mands to help us list and man age disks and drives. The drive and par ti tion man age ment
com mands are: CAT TAB that lists the phys i cal stor age de vices at tached to the sys tem
and what par ti tions they con tain; CAT ASN that lists all drive as sign ments to which ever
par ti tion or disk (ba si cally list ing what's mounted), MOVE … IN to as sign any de vice/par ti -
tion phys i cal or vir tual to a drive (mount) and MOVE … OUT to re move an as signed par ti -
tion from a drive as well as REMOUNT that al lows us to change sys tem disks on the fly.
NextZXOS also pro vides us with a way to cre ate vir tual disks of vary ing sizes in the form of
two dot com mands: .mkdata and .mkswap

CAT TAB and CAT ASN

CAT TAB lists the stor age de vices cur rently con nected to your ZX Spec trum Next and their
par ti tions. It's syn tax is:

CAT [#n] TAB

where #n is an op tional stream to re di rect the out put to (e.g. to a file). On a stan dard ZX
Spec trum Next with a sin gle SD Card reader, giv ing

CAT TAB

will re turn:

MMC unit 0 (1024M)
MMC unit 5 (1024M)
5>1>NEXT 1024M FAT32

which il lus trates also a point we made early in the chap ter. Each SD Reader is as signed
two de vice num bers (0,5 and 1,6 for first and sec ond SD Read ers re spec tively) ac cord ing
to what par ti tions it holds. If for ex am ple we had eight par ti tions, seven IDEDOS and one
FAT32 then our dis play would have been:

MMC unit 0 (1024M)
0>PLUSIDEDOS 64K sys
0>General 4096K data
0>CPM-A 320K data
0>CPM-B 512K data
0>CPMStuff 512K data
0>Dev 256K data
0>Next 320K data
0>~~~~~~~~~~~~~~~~ 10304K FREE
24 free partition entries
MMC unit 5 (1024M)
5>1>NEXT 1008M FAT32

CAT ASN on the other hand, dis plays which par ti tion or disk is as signed to which drive.
The syn tax is sim i lar to CAT TAB:

CAT [#n] ASN

where, again, #n is an op tional stream for the out put to be re di rected to. On a stan dard ZX
Spec trum Next with a sin gle SD reader and pre pared CP/M (whose vir tual drive a: as we
have dis cussed would be al ready automounted), giving:

CAT ASN

would pro duce the fol low ing out put:

ZX Spectrum Next – User Manual 221

Drive and Partition Management Chapter 20 – NextZXOS and alternatives

A: ---Mounted FS---
C: 5>1>NEXT
M: 4>RAMdisk

If you are ask ing what hap pened to the IDEDOS par ti tion we dis played ear lier, it's not
mounted be cause IDEDOS par ti tions do not auto-mount. To mount them (or any other
par ti tion or vir tual/phys i cal disk) you will need to em ploy the fol low ing commands:

MOVE ... IN, MOVE ... OUT and REMOUNT

In or der to as sign (mount) a disk/par ti tion or vir tual/phys i cal disk to a drive you need
MOVE ... IN. Its syn tax is as fol lows:

MOVE drive IN mount_point

where drive is any valid NextZXOS drive (a: to p:) and mount_point is ei ther a de vice>[par ti -
tion][>][par ti tion_name] or a file spec of a vir tual disk. De vices that don't have par ti tions are
writ ten as X> where X is the de vice num ber, while de vices that have par ti tions are writ ten as
X>Y>[par ti tion_name] where Y is the par ti tion num ber for FAT par ti tions and X>par ti tion
name for IDEDOS par ti tions. In the case of IDEDOS par ti tions the num ber can be to tally
omit ted as well if on de vice 0. As sum ing that we had un mounted the RAMdisk, in or der to
mount it again in some other drive, we'd need to do:

MOVE "o:" IN "4>"

No tice that there's no par ti tion num ber fol low ing the 4> as the RAMdisk has no par ti tions.
To mount a +3 disk im age named mike.dsk lo cated in c:/im ages/ into drive b: we would
need to:

MOVE "b:" IN "c:/images/mike.dsk"

Whereas to mount an IDEDOS par ti tion (for ex am ple one of the ones we ex am ined ear lier)
you would have to:

MOVE "e:" IN "0>CPMSTUFF"

or

MOVE "e:" IN "CPMstuff"

At tempt ing to mount a drive that's al ready as signed will pro duce the er ror Al ready ex ists,
0:1. In or der to do that, you'll first need to unmount the drive with MOVE ... OUT. The syn -
tax is even simpler:

MOVE drive OUT

So to unmount the disk im age from b: we just need to give:

MOVE "b:" OUT

You can not unmount the c: drive and at tempt ing to do so will re port an In use, 0:1 er ror.
You can how ever tem po rarily eject it (for ex am ple to write to it or just change it to a dif fer ent
ver sion of NextZXOS, or even a game). Do ing that with out pow er ing down or just ar bi -
trarily, can dam age your card be yond re pair so you must be VERY care ful. Since the po -
ten tial for dam age is great, NextZXOS has a spe cial com mand to ad dress that spe cific
need called REMOUNT. Re mount is given with out any pa ram e ters and upon invocation it
will prompt you to:

Remove/insert SD and press Y

Once you see the mes sage you can eject your SD card, and when you re in sert it, press Y.
NextZXOS will per form the same mount ing pro ce dure it per forms on boot (for all drives)
and your SD card con tents will be safe!

222 ZX Spectrum Next – User Manual

Chapter 20 – NextZXOS and alternatives MOVE ... IN, MOVE ... OUT and REMOUNT

Virtual filesystem management – .mkdata and .mkswap

As we've al ready dem on strated, NextZXOS can read un pro tected +3DOS and IDEDOS
vir tual disks, but how are these made? There are two ways to do it: We can ei ther cre ate
them ex ter nally us ing spe cial im ag ing soft ware or right on NextZXOS, with the use of a
spe cial ised dot com mand called .mkdata. Its syn tax is as follows:

.mkdata file spec [size]

where file spec must fol low the re quire ments set forth in the File names sec tion for le gal file -
names omit ting the drive and size is an op tional num ber from 1 to 16 (in Mega bytes).
Leav ing size blank, will se lect the de fault size of 16 Mega bytes. You can use ANY file -
name, how ever only file names with a .p3d type, named as de scribed in the automounting
sec tion ear lier in this chap ter and lo cated in side c:/nextzxos/ will be automounted. Here
are some examples:

To make an 8 Mega byte automountable (as a:) vir tual disk:

.mkdata /nextzxos/drv-a.p3d 8

To make a 16 Mega byte vir tual disk that can be man u ally mounted in c:/im ages/:

.mkdata /images/disk.p3d

In or der to make a vir tual disk in a dif fer ent drive you need to first change to it. For ex am ple:

CD "d:"
.mkdata /images/disk.p3d

will make a 16 Mega byte vir tual disk im age file named disk.p3d in d:/im ages/.

NextZXOS also sup ports vir tual mem ory in the form of vir tual swap par ti tions. These are
sim i lar to the vir tual disk im ages with the dif fer ence that they can not be mounted as drives.
You can make vir tual swap par ti tion im ages with the .mkswap dot com mand which fol lows
the same syn tax as .mkdata.

.mkswap file spec [size]

To make an 8 Mega byte vir tual swap par ti tion im age named swp-0.p3s you will need to
give:

.mkswap /nextzxos/swp-0.p3s 8

Swap par ti tions named swp-0.p3s to swp-9.p3s which are pres ent in the c:/nextzxos/
folder will be avail able for ma chine-code ap pli ca tion pro grams to use (via the IDEDOS
API).

Printing

NextZXOS sup ports print ing via ZX Printer, Timex Sinclair 2040 and compatibles like the
Alphacom 32. It also sup ports print ing via the WiFi mod ule – if one is in stalled – and you
have ac cess to a Pipsta™ printer or a printer com pat i ble with D. Rimron's PrintShop as
found on: https://github.com/StalePixels/PrintShop.

To print a list ing you only need the LLIST com mand while to print any string to the printer
you need to use LPRINT. Layer 0 and Layer 1 screens can also be printed by us ing the
COPY com mand given by it self with no op tions. In or der to dem on strate this we will have
to jump a bit ahead. Load one of the games from c:/games/Classic48/ (pref er a bly one
with a load ing screen). Once you see the screen press the NMI but ton on the left side of
your ZX Spec trum Next. A menu will ap pear. Us ing the cur sor keys go to the Screenshot
menu and press ENTER. Se lect Stan dard and Press ENTER. Press SPACE and type in a
name (for ex am ple: test.scr) Press ENTER again and then press the re set but ton on the
side of your com puter or F4 on your key board. Re-en ter NextBASIC and nav i gate to the lo -
ca tion you were in. Then do the fol low ing:

ZX Spectrum Next – User Manual 223

Virtual filesystem management – .mkdata and .mkswap Chapter 20 – NextZXOS and alternatives

LOAD "test.scr" SCREEN$:COPY

The screenshot will print on your printer!

Since you're un doubt edly ob ser vant you may have seen the Print item in the Screenshot
submenu when you pressed the NMI but ton. That will do the ex act same thing! But more
on that in its own sec tion be low. There are also, other ways to print which we will ex am ine
in the next chapter.

The SPECTRUM command

There is a com mand that's a bit of a jack of all trades; it can switch modes, load pro grams
in var i ous snap shot for mats, change col our schemes, ad just the dis played col umns for
the ed i tor and fi nally con trol and ad just the screensaver15 func tion! Let's start with the sim -
plest it er a tion of SPECTRUM which is the com mand with out any op tions. This will take us
into 48K mode pre serv ing any NextBASIC pro gram we have in mem ory but los ing all Next
mode fea tures ex cept for the dot com mands which will be still avail able. If the pro gram
you have loaded in mem ory is us ing spe cial ised NextBASIC fea tures, LIST may pro duce
gib ber ish (like graphics in the place of where com mands would have been) and run ning it
will prob a bly pro duce a C Non sense in BASIC error. Let's demonstrate. Type:

LOAD "c:/nextzxos/mounter.bas"
LIST
SPECTRUM
LIST
RUN

If you are in the stan dard ZX 48K mode, you will need to know the keywords, printed on
your key board, but as sum ing you can find where CAT is (Press EXTEND then SYMBOL
SHIFT and 9), type:

CAT

You will re ceive an O In valid stream, 0:1 er ror. That's be cause 48K ZX Ba sic is un aware of
any mass stor age me dium ex cept for the ZX Microdrive and CAT is made to work with
that. In or der to ac tu ally see what's on your drive, you will need the dot com mand equiv a -
lent of CAT, .ls. In deed typing:

.ls

you will once again, see what's on your drive.

Once SPECTRUM is used to change to 48K Mode, you can not re turn to the Next mode
us ing a com mand (as SPECTRUM does not ex ist in 48K BASIC). In stead you will have to
re set your ma chine, us ing ei ther the Re set but ton on the side of the com puter or by press -
ing F1.

A more com plex it er a tion of the com mand is the fol low ing:

SPECTRUM file spec

This com mand loads a snap shot file in the pop u lar .z80, .sna, .snx16, .p and .o for mats
and runs it. 48K, 128K as well as ZX80 and ZX81 snap shots are sup ported. Here are some
ex am ples:

To load the ZX81 clas sic 3D Mon ster Maze:

SPECTRUM "/games/zx81/3dmm/3dmonstermaze.p"

To load Pogie in Dreamworld Demo:

224 ZX Spectrum Next – User Manual

Chapter 20 – NextZXOS and alternatives The SPECTRUM command

15 A screensaver is a protective function for your display. Some displays can damage themselves if they are displaying
the same picture for a prolonged period of time. A screensaver program, produces movement on screen
automatically after a period of inactivity to prevent that type of damage.

16 The .snx type is essentially the same as .sna but instructs SPECTRUM to load the snapshot using some Next mode
settings (as for example ZXN DMA instead of Z80 DMA) as it prioritises features over compatibility.

SPECTRUM "/games/next/pogie/pogie.snx"

To load Darkstar:

SPECTRUM "/games/classic128/

darkstar.z80"

To change col our schemes for the NextBASIC Ed i tor, SPECTRUM can be used with one of
the fol low ing mod i fi ers: INK, PAPER, FLASH, BRIGHT and ATTR (which sets all the pre vi -
ous ones in one com mand). The syn tax is as follows:

SPECTRUM MODIFIER n

where MODIFIER is one of INK, PAPER, FLASH, BRIGHT or ATTR and n is a stan dard col -
our from 0 to 7 when us ing the INK and PAPER mod i fi ers, 0 to 1 for dis abled or en abled
when us ing the BRIGHT and FLASH mod i fi ers, or cal cu lated as:
(128*flash)+(64*bright)+(8*pa per)+ink for the ATTR mod i fier. Here are some examples:

SPECTRUM INK 4:SPECTRUM PAPER 0

or

SPECTRUM ATTR 4

both set the NextBASIC Ed i tor colours to green ink on black pa per. You can see how the
sec ond one is de rived by do ing the fol low ing cal cu la tion: (128*0)+(64*0)+(8*0)+4

SPECTRUM PAPER 1:SPECTRUM INK 6

or

SPECTRUM ATTR 14

set the NextBASIC Ed i tor colours to yel low ink on blue pa per. Try to fig ure out how the sec -
ond vari a tion works!

The col our scheme ap plies to the stan dard 32-col umn ed it ing mode as well as the hi-res o -
lu tion 64/85 col umn modes. How ever, since Layer 1,2 only al lows 8 dif fer ent col our
schemes, the scheme used is the one with the same PAPER col our as standard mode.

SPECTRUM can also be used with the CHR$ mod i fier to set the num ber of col umns in the
NextBASIC ed i tor. Its syn tax is:

SPECTRUM CHR$ n

where n is one of 32, 64 or 85 for the avail able col umn modes. To switch for ex am ple to 64
col umn mode you should type:

SPECTRUM CHR$ 64

At tempt ing to en ter a value other than 32, 64 or 85 as pa ram e ter will pro duce an In te ger
out of range, 0:1 error.

Fi nally, SPECTRUM used with the mod i fier SCREEN$ can con trol the NextZXOS
screensaver be hav iour. The syn tax is as fol lows:

SPECTRUM SCREEN$ n,t

where n is the type of screensaver (0 = bounc ing box, 1=blank screen) and t is the time -
out in min utes from 0 to 127. If t is 0 then the screensaver is dis abled un til the next re set.
The screensaver will ac ti vate (af ter the se lected time out) when ever the ma chine is wait ing
for a key to be pressed un der the fol low ing circumstances:

• In menus, Browser, Calculator, NextBASIC Editor or while in the Command Line

• During INPUT statements

ZX Spectrum Next – User Manual 225

The SPECTRUM command Chapter 20 – NextZXOS and alternatives

• During PAUSE 0 statements

• When NEXT #n,var is waiting for a keystroke from the K, S or W channels

• When executing machine-code software that uses the IDE_BROWSER call, or
the IDE_STREAM_IN call (accessing K, S or W channels) or an IDE_BASIC call
accessing the previously listed NextBASIC statements.

The screensaver will not ac ti vate when games are be ing run (un less they use the API calls
listed above), or in 48 BASIC.

Speed Control

The ZX Spec trum Next has a much faster CPU than its pre de ces sors op er at ing in one of
the fol low ing speeds: 3.5MHz (same as the orig i nal ZX Spec trum), 7MHz, 14MHz and fi -
nally 28MHz. NextBASIC by de fault will set the CPU to ex e cute at 3.5MHz, a set ting which
can be changed us ing ei ther the left and right cur sor keys while in any NextZXOS menu,
by press ing the F8 key on your key board (which cy cles through all avail able speeds) or di -
rectly from NextBASIC by us ing the RUN AT com mand. The syn tax of the latter is as
follows:

RUN AT s

where s is a num ber from 0 to 3 (0=3.5 MHz, 1=7 MHz, 2=14 MHz and 3=28 MHz).
For ex am ple, to ex e cute a pro gram at 28 MHz be gin the pro gram with a:

1 RUN AT 3

NextBASIC Editor and Program support commands

NextZXOS pro vides a few di rect com mands, that al low NextBASIC pro gram mers to con -
trol both the ap pear ance as well as the flow of their pro grams. These are:

ERASE [first, last]

erases all lines be tween first and last (in clu sive) keep ing any vari able in tact. ERASE on its
own de letes the en tire pro gram (still keep ing all vari ables in tact) and un like it's pa ram e ter
ver sion, can be in cluded in a pro gram (see the autoexec.bas sec tion be low for an
example).

LINE first, step

re num bers the pro gram start ing at line first us ing a pre de fined step. Let's as sume a small
pro gram:

10 FOR f=1 TO 10

20 PRINT f,

30 NEXT f

If we now give:

 LINE 2,3

The pro gram be comes:

2 FOR f=1 TO 10

5 PRINT f,

8 NEXT f

It's ob vi ous that we can pack as much "pro gram" as we can in the amount of lines
NextBASIC al lows once our pro gram is final ised. This should not be con fused with the di -
rect com mand

BANK n LINE first, last

226 ZX Spectrum Next – User Manual

Chapter 20 – NextZXOS and alternatives Speed Control

which cop ies all lines in the main pro gram be tween first and last to BANK num ber n. More
on all bank-re lated com mands can be found on Chap ter 24.

LINE MERGE first, last

per forms an even nicer op ti mi sa tion to our typed pro grams, merg ing lines to gether to
form a lon ger line, thus free ing lines for use. As sum ing the pro gram above, type:

 LINE MERGE 2,8

the pro gram then be comes:
2 FOR f=1 TO 10: PRINT f,:

NEXT f

Ob vi ously LINE MERGE makes our pro grams less read able but let's us pack them even
more al low ing for even more line num bers to be freed.

BANK n MERGE

cop ies a banked pro gram back into the main pro gram (more de tails on Chap ter 24) eras -
ing ev ery thing that's al ready there with the same line num bers. For ex am ple, in the above
LINE MERGE ex am ple, EDIT line 2 to be also line 4 by go ing over line num ber 2, de let ing
it and re plac ing it with a 4. Then do the following:

BANK NEW a
BANK a LINE 2,2
ERASE 2,2
LIST

and fi nally:

BANK a MERGE

You'll see that the line you erased with ERASE 2,2, is back into place

NextZXOS also pro vides two com mands we've al ready seen but have n't suf fi ciently ex -
plained yet:

REM and ;

REM is not re ally part of a NextBASIC pro gram; it just adds re marks to it for im proved read -
abil ity and doc u men ta tion. It can be sub sti tuted by a semi co lon (;) but only as the first
char ac ter af ter a line num ber or a co lon. The rea son for the semi co lon is that it can be
parsed by ex ter nal pro grams like dot com mands and get to tally ig nored by NextBASIC.
Due to how ever the way that sev eral NextBASIC com mands are struc tured the semi co lon
needs to be pre ceded by a co lon char ac ter (:) or a line num ber and we can not place it
anywhere we want. For example:

10 REM this is a remark

20 ; This is also a remark

are func tion ally equiv a lent. How ever we can do this:

10 PRINT 10: REM Remark

and not
10 PRINT 10; Remark

as in stead we'd have to write:

10 PRINT 10:; Remark

[BANK n] LIST [#c] [PROC name()]

ZX Spectrum Next – User Manual 227

NextBASIC Editor and Program support commands Chapter 20 – NextZXOS and alternatives

which just lists the pro gram (and op tion ally re di rects its out put to a stream) that's cur rently
in mem ory. Op tion ally LIST can pro duce the list of the pro gram that's cur rently in BANK n,
or list a pro gram whether banked or not start ing with the pro ce dure name()

The Browser

In or der to al low eas ier nav i ga tion of your files, NextZXOS co mes with the Browser, a pro -
gram that al lows you to do so in a vi sual way. The Browser fea tures the fol low ing:

• Easy navigation of drives and folders

• File management facilities: copying, erasing, renaming and moving of files

• Quick virtual disk mapping

• Automatic launching of known file types

• Extensible architecture for launching

• Cursor key or joystick navigation

The Browser is launched by us ing the EDIT key to bring up the NextZXOS menus or di -
rectly upon bootup by se lect ing the first en try in the NextZXOS menu.

The Browser Window

Once the menu is se lected and ENTER is pressed, the screen changes to the Browser
win dow con tain ing a list of the files lo cated in the de fault drive and folder (as set by the CD,
LOAD, SAVE, MERGE or VERIFY com mands in NextBASIC). Nor mally upon ini tial boot
this will be c:/ but sub se quent runs with out a com plete power down may show dif fer ent lo -
ca tions re flect ing the last drive and folder set as de fault. Note that you do not need to
switch to NextBASIC to set a de fault drive and folder. What ever you se lect with the Browser
has the ex act same ef fect for NextBASIC, as giv ing one of the aforementioned commands.

The Browser win dow con sists of four sep a rate ar eas, as seen in the fig ure be low:

On the top of the Browser win dow, is the Cur rent Drive and Path Area. As you nav i gate your
drives, it changes to re flect the cur rent drive and folder you're in. This in ef fect, is the same
as giv ing the PWD com mand when in NextBASIC.

Right be low that, is the File and Folder List Area; it con tains all files and fold ers at the point
you're lo cated as re flected by the Cur rent Drive and Path Area at the top in com bi na tion
with the Ac tive File Fil ter Area that's right be low it (more about that in a lit tle bit) shown in
pages of 20 items at a time. You nav i gate the file and folder list with the cur sor keys,
ENTER and EDIT, a joy stick set as cur sor, or the first Kempston or Megadrive joy stick re -

228 ZX Spectrum Next – User Manual

Chapter 20 – NextZXOS and alternatives The Browser

Fig. 30 – Browser window areas and their function

gard less of what port (Left or Right) it's set to. Im me di ately be low the File and Folder List
Area, is the Ac tive File Fil ter Area with which, you can re duce the file list to what ever types
(in clud ing fold ers which have es sen tially a blank type) you wish to see (ac cord ing to a fil ter
set by wildcards) and fi nally, the bot tom two lines is the Info/Sta tus and Com mands Area.

Using the Browser

The Browser is ex tremely easy to use; all it takes is a few key strokes to ac com plish most
tasks. Con trols are listed in the next ta ble:

Key De scrip tion
ï Moves one page up or to the topmost item if you're on the first page
ð Moves one page down or to the last item if you are on the last page
ñ Move up one item
ò Move down one item

ENTER If it's a folder, change to that folder. If it's a file attempt to execute it
SYMBOL SHIFT + ENTER Attempt the secondary action stored in browser.cfg for the file type

EDIT Move up one folder

Ta ble 18 – Browser con trols

while com mands are the fol low ing:

Key De scrip tion

D Cyclically changes the drive to the next in the list of mounted drives

K Makes a new Folder

R Renames the currently selected item

C Selects the currently highlighted file for copying

E Erases the currently selected item

M Remounts all drives

U Unmount current drive

Ta ble 19 – Browser com mands

In or der to copy a file, you will need to high light (us ing the cur sor keys) the file and then
press C. The sta tus lines will change to: Copy? (Y/N) to which you'll need to re ply with a Y
or N (for Yes or No). Then you nav i gate to the new lo ca tion whether this is on the same
drive or on an other drive and once you've reached your in tended tar get you will need to
press P. The Browser will ask you if you want to Paste here? (Y/N) to which you'll need
again to re ply with a Y or N. If you at tempt to copy a Folder (marked by a <DIR> on the file
and folder list) the Browser will still ask: Copy? (Y/N) but it will si lently re ject any at tempt to
P(aste) the folder on an other location.

Erase also asks a sim i lar ques tion; Erase? (Y/N) will ap pear af ter you high light a file and
press E but in the case of a folder it will fail with a Dir Full flash ing er ror dis played in the Sta -
tus Area if the folder con tains any item in it.

Re name, as in the case for the MOVE com mand we ex am ined pre vi ously, does three
things: Re names and/or moves a file. You high light an item and press R, and a New
name: prompt ap pears in the Sta tus Area ask ing you for a new name (or a new lo ca tion to -
gether with the old or a com pletely new file name). Re name does n't work across drives so
no drive name is re quired in case of a move, which means that you can start the new name
with a / or \ to in di cate the root folder of the cur rent drive. As a mat ter of fact en ter ing any
drive (even the cur rent one) at the be gin ning of the new name file spec, will fail with a No re -
name be tween drives error.

You can Re name/Move a folder to be un der an other folder, how ever the lat ter must al -
ready ex ist oth er wise Re name will fail with an In valid path error.

To make a new folder/di rec tory, the Browser has the M(a)K(e) Dir com mand, ac ces si ble
by press ing K on your key board. The Sta tus Area will change to dis play a New name:
prompt. The new name must con form to the pa ram e ters of a folder file spec as dis cussed
in the MKDIR com mand sec tion ear lier. As is the case with MKDIR, any at tempt to cre ate a

ZX Spectrum Next – User Manual 229

Using the Browser Chapter 20 – NextZXOS and alternatives

folder in a drive that does n't sup port it will re sult in a Not im ple mented er ror in the Sta tus
Area.

The Browser can unmount any drive ex cept drive c: by switch ing to that drive us ing D and
then press ing U on the key board and mount any vir tual disk im age it knows about (that is:
.dsk and .p3d file types) by se lect ing it and press ing ENTER. It will ask you which drive let -
ter you want to mount it on by dis play ing a Mount on which drive? (A-P) prompt fol lowed
by a [A: is rec om mended] in the case of +3 disk im ages. It will then dis play a Try to boot
disk now? (Y/N) prompt. The lat ter pro cess will try to load spe cial files named * or DISK
that ex ist in side the disk im age. If auto boot ing is not pos si ble a mes sage: Not bootable
will ap pear in the Sta tus Area.

There is no way to re mount a sin gle, pre vi ously mounted phys i cal drive that you chose to
unmount through the Browser. You have, how ever the op tion to per form a com plete re -
mount op er a tion by press ing M on your key board. Once you do that, you'll be prompted to
re move your SD card (this mes sage ap plies to both SD cards) and once you press Y on
the prompt, NextZXOS will per form the REMOUNT com mand as dis cussed ear lier, thus
re mount ing any phys i cal drives you've unmounted.

Configuring the Browser

File and drive man age ment op er a tions with the Browser is one facet of what it can do. The
most im por tant func tion it has how ever is to re cog nise and launch files of var i ous types
when we high light them and press ENTER (or SYMBOL SHIFT + ENTER – see im me di -
ately be low). It's able to do so due to its ex ten si ble na ture us ing a sim ple, spe cially formed
text file called browser.cfg that's lo cated un der c:/nextzxos/. The Browser also of fers a
way to as sign TWO types of launch ing for a filetype. This is ac com plished by add ing two
lines in browser.cfg. For ex am ple we could LOAD a .bas file or con vert it to plain text us ing
the .bas2txt dot com mand. The first ac tion would be launched by ENTER and the sec ond
one with SYMBOL SHIFT + ENTER

Each line of browser.cfg con tains in for ma tion formed in the fol low ing fash ion:

TYPE LINE

where TYPE is a 3 letter file type (e.g. BAS) followed by LINE which is a sequence of
NextBASIC commands separated by colon characters as per usual but prefixed with
one of the following symbols:

Prefix Meaning
: Return to Menu afterwards
< Return to Browser afterwards
; Return to NextBASIC afterwards

The NextBASIC com mands that fol low, use the fol low ing placeholders:
Character Meaning

| Is replaced by the short filename as read by the Browser17

"| Is replaced by the long filename as read by the Browser and
must be terminated by a matching quote (")

£ Is replaced by language code (ie. en for English, es for
Spanish etc)

Ad di tion ally, if a quote char ac ter is needed in side the NextBASIC com mand se quence, it
can be es caped us ing the back wards slash char ac ter as fol lows \".

Wildcards can be used to re place parts of a file type (* for the re main der, ? for only one
char ac ter)

Browser.cfg can be ed ited us ing any stan dard text ed i tor, or with the spe cial pur pose dot
com mand called .as so ci ate we al ready touched upon, on ear lier sections.

230 ZX Spectrum Next – User Manual

Chapter 20 – NextZXOS and alternatives Configuring the Browser

17 This functionality is recommended with dot commands that cannot deal with LFNs.

The Command Line

The NextBASIC ed i tor is ex cel lent for ed it ing large pro grams, how ever for sin gle use com -
mands like the ones for file man age ment or the dot com mands we have been ex am in ing
on a case-by-case ba sis, it can be a bit cum ber some to use, es pe cially since the un der ly -
ing NextBASIC list ing will ap pear af ter ev ery di rect com mand. For that rea son, NextZXOS
in cludes a spe cial ver sion of the NextBASIC ed i tor, that hides (but does not erase) any
NextBASIC pro gram that you may be ed it ing and of fers an un clut tered view of the screen
mak ing it eas ier to en ter com mands di rectly to the op er at ing sys tem. Un like other op er at -
ing sys tems, the NextZXOS com mand line still gives full ac cess to NextBASIC and does n't
in clude a prompt like the one avail able on CP/M which we'll ex am ine a bit fur ther. To ac -
cess the Com mand Line in ter face, press EDIT to bring up the NextZXOS menu, se lect
Com mand Line and press ENTER. While in the Com mand Line in ter face you have the op -
tion to change how many col umns are dis played by ei ther again call ing up the NextZXOS
menu with EDIT and se lect ing the 32/64/85 en try or by di rectly giv ing the SPECTRUM
CHR$ com mand that can change the col umns dis played im me di ately. See the
SPECTRUM CHR$ entry previously in this chapter for details of usage.

ROM Cartridge Loaders

For us ers of ZX In ter face 2, Ram Turbo and Dandanator, NextZXOS in tro duces the abil ity
to load ROM car tridge based soft ware di rectly from the More… submenu. Since the ZX
Spec trum Next starts with the ex pan sion bus dis abled, it pro vides a quick way to type the
ap pro pri ate com mands to load ei ther 48K or 128K ROM based soft ware as well as ap ply
all nec es sary set tings to en sure max i mum com pat i bil ity of car tridge based soft ware. All
you have to do is se lect the ap pro pri ate op tion. NextZXOS, will make the nec es sary ad just -
ments, enable the bus and load the software.

48K BASIC

The 48K BASIC menu, lo cated in the More… submenu, turns your ZX Spec trum Next to
into a stan dard 1982 ZX Spec trum… with a twist! First of all, ac cord ing to the Next per son -
al ity you have se lected dur ing boot, you may have full key en try (Look ing Glass) in stead of
to ken (i.e. the keywords you see printed on your ZX Spec trum Next's key board) sin gle-key
en try (ZX Stan dard). Ad di tion ally, you have ac cess to all the ZX Spec trum Next's ad di tional
fea tures al though not from BASIC. Fi nally you have ac cess to your SD card via the dot
com mands we've al ready dis cussed. You can also reach 48K BASIC us ing the
SPECTRUM com mand as discussed in a previous section.

NMI Menu

While in Next mode, press ing the NMI but ton will launch the NMI menu which pro vides a
lot of use ful func tion al ity to your ZX Spec trum Next. The NMI menu traces its lin eage back

ZX Spectrum Next – User Manual 231

The Command Line Chapter 20 – NextZXOS and alternatives

WARNING! WARNING! WARNING! WARNING! WARNING!

Disabled Expansion Bus refers to disabled SIGNALS on the Expansion Bus. The
Expansion Bus is CONSTANTLY UNDER POWER and you must ALWAYS PLUG
Interfaces and ROM cartridges with ALL CABLES DISCONNECTED otherwise
IRREPARABLE DAMAGE MAY OCCUR!!!!

WARNING! WARNING! WARNING! WARNING! WARNING!

to an ex pan sion in ter face called Multiface. Multiface, al lowed us ers to pause a pro gram
and break into it, cre ate snap shots of the sys tem's mem ory which upon re load, placed the

ma chine in the same place they were (and run ning the spe cific pro gram they were) at the
point in time they were, when they saved each snapshot.

The NextZXOS NMI menu of fers, how ever, many more fea tures over those of the orig i nal
Multiface. We'll ex am ine these be low.

Upon load ing, we can see the fol low ing en tries in the menu:

Re turn – turns off the NMI menu and re turns you to what ever you were do ing prior to press -
ing the NMI but ton.

Snapshot48/128 – Pro duces a snap shot of any leg acy soft ware that's cur rently run ning. It
au to mat i cally re cog nises if it's a 48K type or 128K type of soft ware and ad justs the snap -
shot type pro duced accordingly.

Screenshot – Pro duces a screenshot of what ever is in any of the lay ers' screen mem ory ar -
eas and prints (to a ZX Printer or com pat i ble) a ULA (Layer 0) screenshot. It also saves and
re stores the cur rent pal ettes. (Fig. 32)

TAP Files – Man ages the re di rec tion of in put and out put to drive t: (tape) to vir tual tape files
(.tap) as well as browses their con tents (In es sence a short cut to .tapein, .tapeout and
.lstap we've cov ered pre vi ously). (Fig. 33)

POKEs – Man ages and ap plies .pok files to run ning soft ware. These are files con tain ing
known workarounds and patches to spe cific ap pli ca tions – used mostly for games; for in -
fi nite lives etc.

De bug tools – Gives ac cess to maybe the most pow er ful set of fea tures in the en tire suite:
A Next Reg is ter and Z80n Reg is ter sta tus browser, a mem ory map and bank browser, the

232 ZX Spectrum Next – User Manual

Chapter 20 – NextZXOS and alternatives NMI Menu

Fig. 33 – NMI TAPs menu

Fig. 32 – NMI Screenshots menu

Fig. 31 – NMI main menu

abil ity to set break points in mem ory to in ter cept run ning code as well as a banked mem ory
save tool. (Fig. 34)

Set tings – Al lows easy mod i fi ca tion of hard ware set tings on-the-fly, from the ones avail -
able on the con fig u ra tion menu to the ones that are more nuanced (like the type of DMA
chip in use or the ma chine tim ings used in the spe cific per son al ity) which aren't al ways
avail able through the stan dard con fig u ra tion (Fig. 35 through 38).

Keymap (48K) – This is a du pli ca tion of the .keyhelp dot com mand and pro vides a quick
on-screen leg end of the key board to kens (for the 48K mode) which is par tic u larly use ful if
us ing a board-only Next or a PS/2 keyboard.

About – Dis plays a NextZXOS About screen with sev eral cred its to con tri bu tors of bug re -
ports and sug gested fea tures.

The NMI menu, uses the fa mil iar Browser in ter face dialogs for load ing and sav ing of files
as needed as can be seen in the next fig ure.

ZX Spectrum Next – User Manual 233

NMI Menu Chapter 20 – NextZXOS and alternatives

Fig. 34 – NMI Debug Tools menu

Fig. 35 – NMI Settings menu
Fig. 36 – NMI Settings Joysticks submenu

Fig. 37 – NMI Settings General submenu

Fig.38 – NMI Settings Sound submenu

The NextZXOS folder structure

To achieve a com plete and prop erly boot ing NextZXOS the fol low ing fold ers and files
need to be pres ent on an SD Card:

At the root level there's the Firm ware file (TBBLUE.FW) and the fold ers c:/nextzxos/ car ry -
ing all the driv ers (RTC, Mouse etc), sup port pro grams and over lay files as well as the
base CP/M im age file to gether with the startup com mand file autoexec.bas.

Then there is c:/ma chines/next/ which con tains two ver sions of the NextZXOS ROM (they
dif fer in the type of 48K ROM they con tain; Sinclair or Look ing Glass), the NextZXOS
divMMC ROM, the NMI ROM as well as the con fig u ra tion file config.ini which tells the Firm -
ware the par tic u lar set tings you re quire for your machine.

Fi nally, there is c:/dot/ which con tains, apart from the third party dot com mands, the ones
that con sti tute part of NextZXOS, namely: .$, .as so ci ate, .bas2txt, .browse, .cpm, .defrag,
.in stall, .lfn, .mem, .mkdata, .mkswap, .nextver, .txt2bas and .uninstall.

To ob tain just a boot ing NextZXOS you do not need the dot com mands, CP/M base im -
age, mouse driver, RTC driver or even autoexec.bas and NMI rom. Your func tion al ity how -
ever will be lim ited.

NextZXOS dot commands

We have talked about dot com mands, cov er ing each one as the case dic tated, but we
have n't talked about what they ac tu ally are! Well, dot com mands are ba si cally an easy way
to add func tion al ity to NextBASIC (and ZX BASIC) orig i nally in vented for use by esxDOS by
its au thor, Miguel Guerreiro. Copy ing from the z88dk18 doc u men ta tion by Allen Albright: A
dot com mand is loaded into an 8 K ram page lo cated at ad dress 0x2000, over lap ping the
rom, and can run with out dis turb ing the ba sic sys tem. They are launched from ba sic by typ -
ing their names with a lead ing dot, hence the name "dot com mand". Any string fol low ing the
dot com mand's name is passed as a com mand line. On re turn the dot com mand can gen -
er ate esxdos er rors in the ba sic sys tem, ei ther canned ones or cus tom ones.

NextZXOS has ex tended the scheme while re main ing com pat i ble with the orig i nal spec i fi -
ca tion, thus a sep a rate set of dot com mands is in cluded with Sys tem/Next™, than what
co mes with esxDOS. See the esxDOS sec tion be low for more de tails on the differences.

The scope of this manual is a bit limited to cover dot commands in their entirety but you
can visit: https://github.com/z88dk/z88dk/tree/master/libsrc/_DEVELOPMENT/EXAM
PLES/zxn/dot-command to find out more about how they work and how you can write
your own.

234 ZX Spectrum Next – User Manual

Chapter 20 – NextZXOS and alternatives The NextZXOS folder structure

Fig. 39 – NMI save/load dialogs

18 z88dk is a C-based cross-development system for a variety of Z80 compatible CPUs and systems.

NextZXOS, apart from the third party ones in cluded in the Sys tem/Next™dis tri bu tion, has
sev eral dot com mands that per form spe cial func tions not cov ered else where. These are:

.$ Dot commands cannot accept string arguments from
NextBASIC, so .$ allows execution of a dot command
accepting any parameter passed as a string thus enabling
full integration of dot commands in NextBASIC

.bas2txt and .txt2bas NextBASIC is stored in a tokenised form. That means that
each keyword occupies one token (see Appendix A for
these values).
That further means, that it's only machine and not
human-readable other than from within the NextBASIC
Editor. These two dot commands allow NextBASIC to be
exported to a text file to be edited by a more specialised
programmer's editor, or shared with other, non Sinclair
computers and imported back in a form that the NextBasic
Editor can understand.

.browse One of the nicest features of the Browser is its built-in file
dialogs. .browse allows these to be used within your
NextBASIC programs and pass the selected file to a string
variable in your program saving immense amounts of time
from programming menu-based navigation.

.defrag NextZXOS provides a streaming API which can be used for
audio or video. If the files however are not defragmented,
streaming is interrupted. .defrag solves this problem
rearranging the file in question to be in one, continuous,
piece.

.install and .uninstall These are the dot commands to install and remove drivers
like for example the mouse driver from the system.
NextZXOS provides a driver API, which you can use to
write your own drivers which is used in conjunction with
the new DRIVER command.

.lfn This is a very special use case command; its sole purpose
is to return the long file name for a short (8+3) filename.
.lfn does not work on IDEDOS/+3DOS drives, or rather it
does work but returns the same name as +3DOS drives
only accept 8+3 filenames.

.mem Returns the free memory for NextZXOS and NextBASIC
use

.nextver Assigns the current version of NextZXOS to a variable we
specify.

Modifying the startup – Autoexec.bas

NextZXOS pro vides you with a very fast way to set up your NextBASIC and NextZXOS en vi -
ron ment upon boot by us ing com mands stored in a spe cial file called autoexec.bas lo -
cated in side the c:/nextzxos/ folder. The same rules ap ply as with reg u lar SAVE, mean ing
you will need to give a LINE pa ram e ter to save it be fore it can auto ex e cute. If you omit the
LINE pa ram e ter, the com mands will auto load upon boot but won't ex e cute. For ex am ple

ZX Spectrum Next – User Manual 235

Modifying the startup – Autoexec.bas Chapter 20 – NextZXOS and alternatives

Any errors generated by a NextZXOS dot command generate an error code of 255 (Dot
Command Error) which can be read with the ERROR and ERROR TO commands.
Refer to Chapter 2 for details.

to set up a red back ground with bright white letters upon boot:

10 SPECTRUM PAPER 2: SPECTRUM

BRIGHT 1: SPECTRUM INK 7

20 ERASE: REM ERASES ALL LINES

Then

SAVE "c:/nextzxos/autoexec.bas" LINE 10

Re set and… magic!

CP/M

The ZX Spec trum Next sup ports run ning CP/M Plus (also known as CP/M 3.0), an op er at -
ing sys tem avail able for many mi cro com put ers in the late 1970s and early 1980s.

CP/M pro vides a com mand-line en vi ron ment sim i lar to MS-DOS. A huge amount of soft -
ware was avail able for it, in clud ing pro gram ming lan guages, both in ter preted and com -
piled, word pro ces sors (such as the well-known WordStar), spread sheets, da ta bases,
util i ties, text-based games and much more.

The ZX Spec trum Next runs CP/M Plus us ing a spe cially-writ ten BIOS (Ba sic In put/Out put
Sys tem) which gives it a 80 x 24 text-based ter mi nal sup port ing full colour.

To run CP/M, you need to call up the NextZXOS Startup menu, go to the More… submenu
and se lect the CP/M op tion or from NextBASIC or the Com mand Line, use the dot com -
mand .cpm.

Any soft ware, com pat i ble with CP/M-80, CP/M 2.2, CP/M 3.0 or CP/M Plus will work on the

ZX Spec trum Next's fla vour of CP/M ex cept CP/M-86 soft ware (which re quires an Intel x86
pro ces sor) and CP/M-68 soft ware (which re quires a Motorola MC68K class processor).

Please note that CP/M graph i cal ap pli ca tions re quir ing GSX can not be used at the mo -
ment, al though sup port for these is un der con sid er ation. This is not af fect ing soft ware
avail abil ity con sid er ably, as there is very lit tle soft ware re quir ing GSX; most CP/M soft ware
was text-based.

Getting started

Be fore you can use CP/M, you will need to down load one ar chive file from the The
Unoffical CP/M Web site which is of fi cially li censed to dis trib ute the es sen tial sys tem files
re quired. The file in ques tion is lo cated at: http://www.cpm.z80.de/down -
load/cpm3bin_unix.zip. Once you have down loaded it, us ing a PC, ex tract its con tents
into the c:/nextzxos/cpm folder on your Next's SD card.

236 ZX Spectrum Next – User Manual

Chapter 20 – NextZXOS and alternatives CP/M

Fig. 40 – Initial CP/M setup procedure

Hav ing the ar chive's con tents ex tracted in the afore men tioned folder, you can re start your
ZX Spec trum Next and then choose the CP/M op tion from the More… submenu in the
main NextZXOS menu, or type .cpm in the NextBASIC Ed i tor or the Com mand Line. This
will au to mat i cally set up your CP/M sys tem drive (A:) and im port the sys tem files. When it
has com pleted and re turned to the NextZXOS menu, setup is com plete (Fig. 40 above).
From now on, se lect ing CP/M from the More... submenu will take you straight into CP/M
(Fig. 41).

Commands

CP/M is op er ated by typ ing com mands at the prompt (A>). One of the most use ful com -
mands is DIR which works much in the same way that CAT works in NextZXOS.

Typ ing:

DIR A:

will show a list of all the files on the cur rent drive or the drive spec i fied. Ini tially you will just
have drive A: avail able, but more can be set up (drives A: to P: can be used) us ing the
.mkdata dot com mand in NextZXOS as per the in struc tions pro vided ear lier, so that you
can keep dif fer ent pro grams on dif fer ent drives.

Any file name shown by DIR which ends in .COM is it self a com mand, and can be ex e -
cuted at the prompt. You will have no ticed there are a lot of .COM files to try. An other use -
ful one is:

HELP.COM

which pro vides help and in for ma tion on all the stan dard com mands and util i ties pro vided
with CP/M. Note, that you do not need to type the .COM part all the time; CP/M will find the
ap pro pri ate com mand and ex e cuted with out hav ing to type its ex ten sion (in other words
its file type). So to call up HELP.COM you could just type:

HELP

Com mands are also case-in sen si tive, so it does n't mat ter if you type them in lower or up -
per case or a mix of both; all ver sions of HELP, help, hELP and HelP will call the ex act
same pro gram!

In the CP/M dis tri bu tion that co mes with NextZXOS, there are a num ber of com mands spe -
cific to the ZX Spec trum Next. These in clude:

ZX Spectrum Next – User Manual 237

CP/M Chapter 20 – NextZXOS and alternatives

Fig. 41 – ZX Spectrum Next properly booted CP/M setup

Com mand De scrip tion

UPGRADE Upgrades your installation of CP/M from the latest version available on your SD
card

TERMINFO An interactive demonstration of the terminal facilities provided on the ZX
Spectrum Next

EXIT Exits from CP/M and returns to NextZXOS

COLOURS Changes the colour scheme

TERMSIZE Changes the default terminal size (up to 80 x 32)

IMPORT Imports files from your NextZXOS c: drive (or other FAT drives seen in the
NextZXOS browser)

EXPORT Exports files to your NextZXOS c: drive (or other)

ECHO Sends text or escape sequences to the terminal

NEXTREG Views or changes ZX Spectrum Next hardware registers (use at your own risk!)

Typ ing the name of these com mands will give some more in for ma tion on how to use
them.

Drives and CP/M

CP/M on the ZX Spec trum Next can not ac cess the stan dard SD card drive c: (or other
drives you may have due to hav ing ad di tional SD cards in serted, for ex am ple). This is be -
cause CP/M di rectly ac cesses disks at a low level, and is in com pat i ble with FAT
filesystems.

There fore, on the ZX Spec trum Next, CP/M uses vir tual disk files. These can ei ther be .p3d
files (cre ated by the .mkdata dot com mand) or .dsk files (im ages of stan dard ZX Spec -
trum +3 disks).

Ini tially, your SD card is sup plied with a sin gle im age:

c:/nextzxos/cpmbase.p3d

When you first start CP/M, this is au to mat i cally re named to:

c:/nextzxos/cpm-a.p3d

You can ac cess mul ti ple disk im ages at once in CP/M. To do this, sim ply cre ate ad di tional
files with .mkdata us ing the same nam ing scheme. eg. at the NextZXOS com mand line,
type the fol low ing:

238 ZX Spectrum Next – User Manual

Chapter 20 – NextZXOS and alternatives CP/M

Fig. 42 – TERMINFO output

.mkdata "/nextzxos/cpm-b.p3d"

.mkdata "/nextzxos/cpm-e.p3d"

When you next use CP/M, you will have drives A:, B: and E: avail able. Note that you can
have a drive C: in CP/M if you wish, but this is not the same as the c: drive used in
NextZXOS.

Up to 15 vir tual disk im ages can be used at once by CP/M, and they can be mapped to any
drive A to P, sim ply by nam ing the files in any of these ways:

c:/nextzxos/cpm-X.p3d
c:/nextzxos/drv-X.p3d
c:/nextzxos/cpm-X.dsk
c:/nextzxos/drv-X.dsk

where X is the drive let ter, from A to P. If you have cre ated mul ti ple files re fer ring to the
same drive let ter, CP/M will use the ones named cpm-X in pref er ence to the ones named
drv-X. It has no pref er ence over .p3d or .dsk, so if there is a cpm-b.p3d and a cpm-b.dsk,
then the first one in the di rec tory will be used.

Note that NextZXOS will also au to mat i cally mount these drive im ages (ex cept any im age
where X is c) when it starts up. You can view them in the Browser (press D to change
drives) and copy files be tween them etc. NextZXOS will mount drv-X files in pref er ence to
cpm-X files. You can also man u ally mount other disk im ages which don't fol low the au to -
mat i cally-mounted nam ing scheme. To do this, just press ENTER on the .p3d or .dsk file
in the Browser.

Further information

There is a lot to learn about CP/M, and a lot you can do with it. Some use ful places for fur -
ther in for ma tion are listed be low:

http://www.cpm.z80.de/ Con tains a lot of man u als, doc u men ta tion and soft ware.

In par tic u lar, the CP/M 3 User Guide, Com mand Sum mary and Pro gram mers' Man u als can
be found in the fol low ing lo ca tions:

http://www.cpm.z80.de/man u als/cpm3-usr.pdf User Guide
http://www.cpm.z80.de/man u als/cpm3-cmd.pdf Com mand Sum mary
http://www.cpm.z80.de/man u als/cpm3-pgr.pdf Pro gram mer's Manual

A good start ing point is also:

http://classiccmp.org/cpmarchives/ which links to many more use ful sites, col lec tions of
soft ware, man u als, mag a zines and much more.

ZX Spectrum Next – User Manual 239

CP/M Chapter 20 – NextZXOS and alternatives

Fig. 43 – ZX Spectrum Next CP/M running WordStar 4

Preparing your ZX Spectrum Next for esxDOS

Other than NextZXOS, CP/M and +3e/IDEDOS, your ZX Spec trum Next sup ports na tively
one more Op er at ing Sys tem called esxDOS. This is es pe cially help ful when run ning East -
ern Eu ro pean soft ware as the pre ferred method of stor age is us ing TRDOS which esxDOS
sup ports na tively. Un for tu nately the copy right sta tus of some parts of esxDOS pro hib its its
in clu sion in the Sys tem/Next™ dis tri bu tion, but that does n't mean you can not in stall it
your self. esxDOS can be in valu able for per son al i ties other than the Next Na tive one as it
pro vides older model per son al i ties with an easy way of man ag ing FAT for mat ted SD
cards. As is the case with NextZXOS, it too uses FAT as the pri mary filesystem and thanks
to NextZXOS' de sign, it can there fore co-exist on the same drive without clashes.

In or der to in stall esxDOS you need to do a few things first:

• Go to www.esxdos.org and download either the latest version or the one whose
rom comes with the System/Next distribution. For correct operation, the
minimum supported version is 0.8.6 beta 4

• Using a PC, Mac or Linux machine, unzip the contents of the esxDOS
distribution onto a drive, connect the System/Next™ SD card onto the same
computer and then do the following:
4 Copy the BIN, SYS and TMP fold ers into the Sys tem/Next™ dis tri bu tion's

root folder
4 Copy the ESXMMC.BIN file from the esxDOS root to c:/ma chines/next/
4 Fi nally, edit the config.ini file in c:/ma chines/next/ to in clude esxDOS with the

per son al ity you choose (Note that this does n't ap ply to Next Na tive mode)

Here is an ex am ple that will mod ify config.ini to use esxDOS with the 128K per son al ity
(note that esxDOS will boot any 128K per son al ity in what is called USR0 mode; a spe cial
mode where the ed i tor is 48K but all the 128K fea tures are avail able). Af ter you down load
the esxDOS dis tri bu tion ar chive from the esxDOS site, un pack it and fol low the in struc -
tions above. Then go to c:/ma chines/next/ and us ing any text ed i tor (for ex am ple Note pad
un der Win dows) open config.ini. Locate the line reading:

menu=ZX Spec trum 128k,1,8,128.rom

and mod ify it as fol lows:

menu=ZX Spec trum 128k,1,8,128.rom, esxmmc.bin,<none>

Also, if you have an RTC chip in stalled, go to c:/nextzxos/ and copy RTC.SYS to c:/sys/.
Save it, eject the SD card and trans fer it to your ZX Spec trum Next. Upon boot, press
SPACE and then us ing the cur sor keys, lo cate the ZX Spec trum 128k line. Press ENTER
and in a few sec onds you'll see some thing like this:

That was it, you now have a func tion ing esxDOS in stal la tion for your 128K per son al ity on
your ZX Spec trum Next com puter and the yel low Drive but ton on the left side of your com -
puter will start func tion ing call ing the esxDOS browser.

240 ZX Spectrum Next – User Manual

Chapter 20 – NextZXOS and alternatives Preparing your ZX Spectrum Next for esxDOS

Fig. 44 – ZX Spectrum Next running esxDOS 0.8.6

Channels, Streams,
Drivers and Windows

Channels, Streams, Drivers and Windows

As we have seen thus far, NextBASIC can read data from the key board us ing INPUT and
INKEY$ and it can write data onto the dis play or a printer by us ing PRINT and LPRINT.
How ever, these com mands are re ally a form of short hand de signed to pro tect the user
from some of the com puter's more com plex features.

To the PRINT com mand, for ex am ple, there is no dif fer ence be tween the screen and the
printer. PRINT "Mikayla" re ally means: take the char ac ters which make up the word
Mikayla and send them some where else. It's just con ve nient to use the screen most of the
time. Like wise, LPRINT usu ally sends data to the printer. In fact, what these com mands
re ally do is to send data to one of a num ber of chan nels.

Channels

A chan nel is the path way to the com puter's in put and out put de vices and on the ZX Spec -
trum Next, they are des ig nated by a let ter. These are:

Des ig na tor Di rec tion De scrip tion De fault Streams De fault Sta tus

k Input/Output1 Keyboard 0,1 Open

s Output Screen 2 Open

p Output Printer 3 Open

i Input File (input) Closed

o Output File (output) Closed

u Input/Output File (Update) Closed

v Input/Output Variable Closed

m Input/Output Memory Closed

d Depends Driver Closed

w Input/Output Windows Closed

r Internal Internal Use only N/A Open

Ta ble 20 – NextBASIC chan nels

To ac cess a chan nel, it must be open. Open ing a chan nel makes it ready to re ceive or pro -
duce data. A chan nel is opened by con nect ing it to a stream. From NextBASIC, you would
use a com mand like:

OPEN #4,"k"

which means con nect stream 4 to the key board chan nel. As ev i denced by the ta ble above,
if we go by the di rec tion of data flow there are three types of chan nels: In put, Out put and
In put/Out put (or Up date).

How ever, we can better clas sify chan nels by de vice type: We have Screen, Key board,
Printer, File, Mem ory, Vari able, Win dows and Driver chan nels. Let's ex am ine them ac cord -
ing to the de vice type how ever, as this af fects what types of com mands we can use with
them and how.

The Screen Chan nel deals with ev ery thing that goes to the screen. It is the sim plest of all
chan nels and most of its char ac ter is tics have been cov ered in Chap ter 15 al ready. It is al -
ready opened and con nected to stream #2. In fact you can sub sti tute any PRINT com -
mand with PRINT #2 and it will work in the ex act same way as a reg u lar PRINT command.

Sim i lar things ap ply to the Key board Chan nel. This is al ready con nected to two streams:
#0 and #1 as we can see by the fol low ing lit tle program:

242 ZX Spectrum Next – User Manual

Chapter 21 – Channels, Streams, Drivers and Windows Channels

1 Outputting data to the keyboard might seem a bit peculiar, but once you consider that the computer uses the lower
screen (like INPUT does) to display the characters, it becomes clear why.

10 INPUT #0;"Stream 0 Input: ";a$
20 INPUT #1;"Stream 1 Input: ";b$
30 PRINT a$'b$

The Printer Chan nel is also sim ple and by de fault at tached to stream #3. As a mat ter of
fact, giv ing PRINT #3 is ba si cally a de fault2 long hand for LPRINT and sim i larly LLIST is
ba si cally the same as LIST #3.

Where things start to dif fer en ti ate a bit is with the Files Chan nel. Firstly, no file chan nel is by
de fault open, and sec ondly any file can be opened in 3 modes: In put, Out put and Up date
(In put/Out put). As the names im ply, In put will only ac cept data FROM a file, Out put will
only di rect data TO a file and Up date will al low in put and out put of data TO and FROM a
file. There are a cou ple of spe cial con sid er ations re gard ing file channels:

• You should always take care to close streams that have been opened to a file in
Output or Update modes when you have finished, as otherwise data loss may
occur. It is always good practice to do this even for files opened in Input mode
(or streams open to other channels). The CLOSE command will be examined
further below.

• Files saved by CP/M or a +3e, are usually stored as a number of 128-byte
records and so you may read rubbish at the end of a file that comes from such
a system if it is not an exact multiple of 128 bytes in length. NextZXOS however,
reports proper file sizes and does not suffer from this problem even when it
saves files on a +3DOS/IDEDOS drive.

File chan nels sup port all the pointer com mands (more on these fur ther be low).

The Vari able Chan nels can be used to di rect out put to or in put from a string vari able, which
can be eas ily ma nip u lated within a NextBASIC pro gram. This would al low you to (for ex am -
ple) ex am ine disk cat a logues in your NextBASIC pro gram, or make an auto-run ning game
demo (by in put ting from a string con tain ing set key strokes). The string spec i fied must be a
char ac ter ar ray with a sin gle di men sion, large enough to hold the max i mum amount of
data you expect to have to deal with.

Vari able Chan nels also sup port all the pointer com mands.

The Mem ory Chan nel can be used in a very sim i lar way to the Vari able Chan nels. How ever,
as it is a fixed mem ory re gion, it is more suit able for use by ma chine-code pro grams. It
also re quires you to re serve the mem ory beforehand.

The Driver Chan nels are spe cial chan nels to ex change data with De vice Driv ers. Not ev ery
De vice Driver can be ad dressed by a Driver Chan nel and not all Driver Chan nels have all
op tions or can even ac cess pointer com mands. You will need to re fer to each driver's doc -
u men ta tion in or der to know what is sup ported and what isn't.

Fi nally the most com pli cated Chan nels of all are the Win dows Chan nels. Al though they do
not sup port any of the pointer com mands, they are ex tremely flex i ble as they ac cept a
large num ber of con trol codes as we've briefly men tioned in Chapter 15.

Win dows, are de fined by their top line (0-23), leftmost col umn (0-31), height (1-24), width
(1-32), and op tion ally char ac ter size (3-8) and char ac ter set ad dress. If no char ac ter size
is spec i fied, the de fault is 8. If a char ac ter set ad dress is given, then this is used in stead of

ZX Spectrum Next – User Manual 243

Channels Chapter 21 – Channels, Streams, Drivers and Windows

As streams #0 to #3 are predefined and already opened, altering these may also alter
the behaviour of the system, therefore you are advised to avoid the practice unless you
exercise care.

2 Default means in this context: "without parameters". As we will see further below, even LPRINT and LLIST
behaviour can change

the built-in fonts; this al lows you to use nice fonts such as those pro vided with art pro -
grams and ad ven ture games. Due to their com plex ity, we'll de vote an en tire sec tion to
Win dows af ter we dis cuss streams and the com mands with which we use them.

Streams

Streams3 are con ve nient ways for the com puter to switch be tween chan nels by re fer ring to
them as num bers. This idea makes it pos si ble to write pro grams that can send in for ma tion
to any de vice with out hav ing to use dif fer ent com mands. There are 16 to tal avail able
streams num bered 0 to 15. 4 streams; 0 through 3, as seen on the ta ble above, are al -
ready opened to chan nels k,s and p. Note here, that many streams can be at tached to a
chan nel de pend ing on what we want to do.

Using Streams

All the above might seem com pli cated, and you may well wish to stick to the stan dard
PRINT and INPUT com mands – that's why they're there af ter all. Even these com mands
how ever, are just short cuts to their "com plete" ver sions that also in clude a stream num ber
and the ben e fits of us ing chan nels far out weigh their per ceived complexity.

Stream control commands

Since it's now ev i dent that any de vice on the com puter that ac cepts in put or pro duces out -
put is re ally a chan nel, it's easy to real ise that we have been us ing streams all along; we've
al ready vis ited PRINT and LPRINT (which are re ally the same com mand), used INPUT
and INKEY$ and lastly, we've used LIST and LLIST (which also are the same com mand).
All the above, have ver sions which in clude a # (hash) fol lowed by a cur rent stream num -
ber, so we are al ready halfway there!

Apart from these and OPEN # we saw in the chan nels sec tion above, the fol low ing com -
mands are avail able for work ing with streams: CLOSE #, DIM #...TO, NEXT #...TO,
RETURN #...TO, GOTO #...TO and COPY ...TO #, CAT # and PWD #. We'll ex am ine
them all below:

OPEN #n, channelspec

where n is the stream num ber4 and channelspec is a string that can be any of the fol low ing
(cap i tals or lower case let ters may be used), opens a stream and at ta ches it to the chan nel
de fined by channelspec:

String De scrip tion

"k" The standard input channel (keyboard and lower screen). Streams 0 & 1 are
normally set to this channel

"s" The standard output channel (main screen). Stream 2 is normally set to this
channel.

"p" The standard printer channel (serial or parallel). Stream 3 is normally set to
this channel.

"i>filespec"

This opens an input-only stream to an existing file. If the filename is at least
two characters long, you can omit the "I>" as this will be assumed
(single-character names require the "I>" as otherwise they will be assumed
to be standard channel names).

"o>filespec" This creates a new file and opens an output-only stream to it.

"u>filespec" This opens an existing file and opens an input/output-stream to it.

"m>address, length" This opens an input/output channel to the memory area at address, length.

244 ZX Spectrum Next – User Manual

Chapter 21 – Channels, Streams, Drivers and Windows Streams

3 On other versions of BASIC, streams are called channels and channels are called devices. This may be a bit
confusing to a user coming from a different flavour of BASIC. The concepts however are basically the same.

4 Altering streams 0 to 3 will change the behaviour of the system and should be used with care.

String De scrip tion

"v>x$"
This opens an input/output channel to the variable x$ which must be a
character array with a single dimension, large enough to hold everything that
will be output to it/input from it.

"w>line, col, ht, wid [, csize [, cset]]"

This opens an input-output channel to a text window on the screen, starting
at character position (line,col), with a height of ht character rows and a width
of wid characters. Optionally, a character width of csize (3-8px) may be
specified. This does not affect the definition details of the window, which are
always specified in 8px wide characters. A user-supplied character set may
also be specified, located at address cset. See the Windows special section
for details.

"d>driver_name>[driverspec]"
Opens a channel to driver_name, whose data flow direction is dictated by
the driver it addresses. Driverspec is optional and depends on the driver (if
needed or not).

Ta ble 21 – OPEN # channelspec setup strings

Here are some ex am ples:

OPEN #4,"o>a:test.txt" Creates a file named test.txt on virtual disk drive a:
and opens an output-only channel to it, connected to
stream 4.

OPEN #5,"stuff" Opens an existing file named stuff on the default
drive and opens an input-only channel to it,
connected to stream 5.

Once a stream is opened, it can be used with the stan dard INPUT # and PRINT # com -
mands, as well as the ad di tional pointer com mands. Be fore we get into those, we should
just first men tion:

CLOSE #n

which closes the pre vi ously opened stream #n. If n is a stream be tween 0 and 3, then the
de fault chan nel for that stream (k, s or p) is re at tached to it. Note, that at tempt ing to
CLOSE a stream that has n't been opened, will not pro duce an er ror; in stead it will exit
grace fully with OK, 0:1. For ex am ple:

CLOSE #4 Closes the channel attached to stream 4.

Streams, and es pe cially those opened to large files, can be very long to nav i gate in a se rial
man ner; imag ine hav ing a file that's 100 Kbytes long, you would have to it er ate through
102400 char ac ters to read the very last one byte. For that rea son, NextBASIC main tains
point ers to the po si tion you're lo cated within a stream, how long the stream is (in char ac -
ters / bytes), the abil ity to move these point ers to any lo ca tion within a stream and fi nally
the abil ity to read one byte from the cur rent pointer po si tion from that stream. The com -
mands to do that are called Pointer Com mands and are the fol low ing: RETURN #...TO,
DIM #...TO, GO TO # and NEXT #...TO. Let's visit their syntax below:

RETURN #n TO [%]var

This com mand re turns the cur rent po si tion of stream n and stores it in vari able var. The
vari able can be an in te ger one, which means that it will ac cept –safely– po si tions of up to
65536 bytes within the stream (or a max i mum value of 65535 as po si tion 0 is the very first
po si tion within a stream). Do not use in te ger val ues if you plan on ac cess ing streams
larger than that!

DIM #n TO [%]var

This com mand re turns the size (in char ac ters or bytes) of stream n and stores it in vari able
var. As with RETURN #...TO above, var can be an in te ger vari able in which case the same
warn ing as with the pre vi ous sec tion applies.

GO TO #n, [%]pos

ZX Spectrum Next – User Manual 245

Stream control commands Chapter 21 – Channels, Streams, Drivers and Windows

This com mand sets the cur rent po si tion of stream n to po si tion pos. Let's see how the pre -
vi ous three com mands all tie to gether by ex per i ment ing with browser.cfg:

10 OPEN #4,"/nextzxos/browser

.cfg"

20 REM "i>" is optional since

the filename is longer

than 1 character

30 DIM #4 TO %a: REM Get

filesize and put it in %a

40 RETURN #4 TO %b: REM Get

current location and put

it in %b

50 PRINT "You're in byte: ";

%b ; " of "; %a

60 GO TO #4, %a/2: REM Move

to the middle of the file

70 RETURN #4 TO %b: REM Get

current location and put

it in %b

80 PRINT "Now, you're in

byte: "; %b ; " of "; %a

90 CLOSE #4

NEXT #n TO [%]var

This com mand gets the next char ac ter of in put from stream n and stores it in the vari able
var. If used on the stan dard k chan nel, this is sim i lar to the INKEY$ func tion, ex cept that it
al ways waits for the next char ac ter to be come avail able (ie on the k chan nel, it waits for a
keypress). Us ing an in te ger vari able here, is safe as the com mand gets one char ac ter at a
time ergo one byte so its value will never ex ceed 255.

You can use this com mand in stead of INPUT # on all chan nels that ac cept in put oth er -
wise they're very much iden ti cal in func tion.

Try this lit tle pro gram which will turn your ZX Spec trum Next into a type writer:

10 NEXT #0 TO x

20 PRINT CHR$(x)

30 GO TO 10

COPY file spec TO #n

We've seen this com mand se quence be fore in a short cut which did not in clude a stream
num ber but rather a key word: SCREEN$. In that case n is the stream to chan nel s which
by de fault is #2. When used with a stream num ber, COPY...TO #n, can be used to trans -
fer the con tents of a file to a stream. For ex am ple to write the ex tended ver sion of COPY
"c:/readme.md" TO SCREEN$ we should type:

COPY "c:/readme.md" TO #2

When NextBASIC is run ning, it has four streams nor mally open. Streams #0 and #1 are
con nected to the key board (chan nel k), and are used by INPUT and INKEY$. Stream #2
is con nected to the screen (chan nel s), and is used by PRINT, LIST, CAT and PWD, com -
mands in other words that print some thing to the screen. Stream #3 is con nected to the
printer (chan nel p), and is used by LPRINT, LLIST and COPY (with out pa ram e ters). All of

246 ZX Spectrum Next – User Manual

Chapter 21 – Channels, Streams, Drivers and Windows Stream control commands

these com mands can be re di rected to use an other de vice by in clud ing a # fol lowed by an
open stream number, so

PRINT #1;"This is the lower screen"

will print the mes sage on the lower screen while

PRINT #3;"Who needs LPRINT, Romulus?"

will use the printer. Con versely, LPRINT can be have like PRINT and typ ing:

LPRINT #2;"Are you confused yet Roy?"

makes LPRINT #2 do what PRINT nor mally does.

The Variable and Memory Channels

In the pre vi ous chap ter, we've ex am ined a spe cial dot com mand (.$) that al lowed
NextBASIC to talk to any dot com mand not made spe cif i cally to in ter act with it. The Vari -
able and Mem ory Chan nels can be seen as fa cil i tat ing the re verse flow of in for ma tion; to
get in for ma tion from the out side world into NextBASIC. They both in volve re serv ing some
space be fore hand to ac cept the in put but they dif fer in the sense that the for mer can be
moved any where in mem ory (as vari ables could be stored any where) while the lat ter is a
fixed lo ca tion (which makes it more suit able for use by ma chine code pro grams). You may
re mem ber the se ries of com mands we used to get the out put of PWD in Chap ter 20 or
.time in Chap ter 18. Let's remember them quickly:

DIM d$(255):OPEN #2,"v>d$":.cd --verbose:
CLOSE #2: PRINT d$

and

DIM t$(100):OPEN #2,"v>t$":.TIME :CLOSE
#2:PRINT t$

but now that you know a bit more about streams, should that even work? The an swer is
yes, as it's de signed to work that way. Most dot com mands that pro duce tex tual out put in
a "le gal" way (that is with out cir cum vent ing NextZXOS), will at tempt to out put con tent on
stream #2. By open ing stream #2 to the vari able chan nel and then ex e cut ing the com -
mand whose out put we want to grab, we're per form ing a tem po rary re di rec tion of the
screen stream to the vari able chan nel. Then, once we close the stream again, as the sys -
tem is de signed to do, it re sets it to its de fault chan nel s and re opens it. Ob vi ously if a pro -
gram does not use the inbuilt NextZXOS and NextBASIC rou tines to pro duce out put, this
will pro duce noth ing. The ex am ple be low, shows a more "tra di tional" way of us ing the vari -
able chan nel by us ing the inbuilt fa cil ity of a com mand (CAT ASN in this case) to output to
a different channel:

10 DIM a$(1000)

20 OPEN #8, "v>a$"

30 CAT #8 ASN

40 RETURN #8 TO l

ZX Spectrum Next – User Manual 247

The Variable and Memory Channels Chapter 21 – Channels, Streams, Drivers and Windows

INPUT # may be used with other channels other than k and w such as file(i,o,u),
memory (m) and variable (v) channels. In these cases, it is advisable to avoid any
accidental outputs to the channels, by not using any prompt strings, and by using only
the semicolon as a separator. In most cases, you will want to input a string using the
LINE (See Chapter 15) modifier as without this, the data in the file (or other channel)
would need to be surrounded by quotes.

50 PRINT "Assignment length

is:";l;" chars"

60 PRINT "List is:"

70 PRINT a$(TO l)

80 CLOSE #8

As you can see line 40 also dem on strates the use of a pointer com mand in the vari able
chan nel. If you do not re serve enough room (for the sake of dis play ing the re sults, change
the size of a$ to just 10 char ac ters from the 1000 it has) you will re ceive an 8 End of File er -
ror at line 30.

The mem ory chan nel op er ates in a very sim i lar man ner; once you re serve the space, you
open it and dump the out put to it. Let's mod ify the above pro gram to use the mem ory
channel:

10 CLEAR 29999

20 OPEN #8, "m>30000,1000"

30 CAT #8 ASN

40 RETURN #8 TO l

50 PRINT "Assignment length

is:";l;" chars"

60 REM perform some magic

here via MC

70 FOR f = 0 TO l-1

80 PRINT CHR$(PEEK(30000+f));

:REM print the l first

bytes you stored in memory

90 NEXT f

80 CLOSE # 8

Installable device drivers and Driver Channels

As men tioned in the pre vi ous chap ter, NextZXOS al lows for installable de vice driv ers. A
max i mum of 45 of those can be in stalled.

These are mainly in tended for use as soft ware that al lows ac cess to ex ter nal or in ter nal pe -
riph er als such as print ers, mice, net work de vices etc, but can also be used for other pur -
poses, such as a po ten tial NUL driver which does noth ing. (The no tion of a de vice that
does noth ing is a bit pe cu liar but it has its uses in com put ing!). As men tioned in Chap ter
20, to in stall or uninstall a driver, you need to use the fol low ing dot commands
respectively:

.in stall drivername

.uninstall drivername

248 ZX Spectrum Next – User Manual

Chapter 21 – Channels, Streams, Drivers and Windows Installable device drivers and Driver Channels

If a stream operation fails (like in the example above), the stream will not automatically
close. It is therefore a good practice to start all your programs that operate on a stream
with a CLOSE # prior to actually performing an OPEN # operation for the first time. It's
also even better programming practice to include ON ERROR error-trapping, on every
stream operation (especially the ones that operate on File Channels) as a lot of things
can go wrong while working with files and channels in general (e.g. Running out of data,
or your reserved memory area was smaller than the one you should have reserved etc).

5 This number may change in subsequent versions of NextZXOS

where drivername is the name of the file which con tains the code for each driver. For ex -
am ple the WiFi driver for the ESP chip that your ZX Spec trum Next may have come with or
you may have in stalled your selves is espat.drv.

The doc u men ta tion that co mes with the driver will de scribe how to use it. Some driv ers for
ex am ple may make use of the new DRIVER com mand. This has the fol low ing form:

DRIVER driverid, callid [,n1[,n2]] [TO var1[,var2[,var3]]]

where n1 and n2 are op tional val ues to pass to the driver, and var1, var2 and var3 are op -
tional vari ables to re ceive re sults from the driver call. The in di vid ual DRIVER com mands
that you can use, de pend on each de vice driver and they will also be in the driver's ac com -
pa ny ing documentation.

Driver Channel support

Some driv ers can sup port in put/out put via streams and the Driver Chan nel d. If so, the
doc u men ta tion will de scribe the ex act for mat it sup ports. Gen er ally speak ing how ever, in
or der to open a stream to chan nel d, you will be us ing one of the fol low ing com mand vari -
ants (as sum ing the driver id is ASCII X):

OPEN #8,"d>X"

which opens stream #8 to sim ple driver chan nel for de vice X.

OPEN #8,"d>X>string"

which opens stream #8 to chan nel d as de scribed by string on de vice X.

OPEN #8,"d>X,p1"

which opens stream #8 to chan nel d as de scribed by nu meric value p1 on de vice X.

OPEN #8,"d>X,p1,p2"

which opens stream #8 to chan nel d as de scribed by nu meric val ues p1 and p2 on de vice
X.

To close the driver's stream, you will use a stan dard CLOSE # com mand (in the ex am ples
above that would be CLOSE #8).

Once the driver's chan nel is open, you can use any of NextBASIC's stream in put, out put or
pointer ma nip u la tion com mands (if these are sup ported by the loaded driver; Usu ally
each driver's doc u men ta tion should de scribe what can be used).

A good ex am ple of us ing the driver chan nels can be found in the doc u men ta tion for the
ESP (WiFi) driver by Tim Gilberts, in cluded in the c:/docs/ex tra-hw/ folder of the Sys -
tem/Next™ dis tri bu tion. You can see there for ex am ple that talk ing to the internet via
NextBASIC can be as simple as:

OPEN #4,"d>N>TCP,145.239.200.34:80"

which will open a TCP con nec tion to port 80 on specnext.dev

Windows

NextBASIC of fers the abil ity to cre ate and ma nip u late text "win dows" on screen via its Win -
dow Chan nels. This al lows for im mense flex i bil ity in ma nip u lat ing tex tual out put, go ing be -
yond what sim ple PRINT com mands can.

System Windows vs User Windows

When we talk about Win dows, we're re ally talk ing about two kinds; Sys tem and User Win -
dows. The for mer are cre ated and man aged by NextBASIC while the lat ter are cre ated and

ZX Spectrum Next – User Manual 249

Driver Channel support Chapter 21 – Channels, Streams, Drivers and Windows

con trolled by the user. By de fault, 4 Sys tem Win dows are cre ated; one for each Layer other
than 0. These are full screen and are used to pro duce out put through the stan dard s chan -
nel and only a few pa ram e ters of these can change (size al ways re mains the max i mum
pos si ble).

User Win dows on the other hand can have vary ing sizes and can be de fined any where in
the screen. From now on, we'll re fer to Sys tem Win dows as SW and to User Win dows as
UW. If no des ig na tion ex ists, then the dis cus sion ap plies to both types.

Defining User Windows

User win dows are de fined by their top line (0 to 23), leftmost col umn (0 to 31), height (1 to
24), width (1 to 32), and op tion ally by char ac ter size (3 to 8) and char ac ter set mem ory ad -
dress6. If no char ac ter size is spec i fied, the de fault is as sumed which is 8 px wide. If a
char ac ter set ad dress is given, then this is used in stead of the built-in fonts7; this al lows
you to use nice fonts such as those pro vided with art pro grams and adventure games.

The char ac ter size, has no bear ing on the way the win dow is de fined, but it does af fect the
num ber of ac tual col umns you have avail able. For ex am ple, the fol low ing de fines a win -
dow the size of the en tire screen; but be cause a char ac ter size of 5 is spec i fied, the num -
ber of char ac ters that can be printed in the win dow at any time is 24 x 51:

OPEN #5,"w>0,0,24,32,5"

When out put ting via PRINT to win dows, you can use many of the same con trol func tions
as you can with the nor mal screen. For ex am ple: ' (apos tro phe); start a new line, ,
(comma); start a new col umn, TAB, AT, POINT, INK, PAPER, FLASH, BRIGHT,
INVERSE, OVER.

When first de fined, win dows are in non-jus ti fied mode, but they can be set to be left, full or
cen tre jus ti fied. Note that in jus ti fied mode, some fea tures and con trol codes can not be
ac cessed, so you may need to switch back to non-jus ti fied mode to use them.

A com plete list of con trol codes fol lows in the ta ble be low; these codes can be sent to a
win dow us ing PRINT fol lowed by the CHR$ func tion as we've al ready seen in Chap ter 15.
Note that it's al ways pre ferred to use stan dard PRINT, AT, INK etc com mands in stead of
con trol codes when us ing win dows as they're usu ally eas ier to use than their con trol

250 ZX Spectrum Next – User Manual

Chapter 21 – Channels, Streams, Drivers and Windows System Windows vs User Windows

Fig. 45 – NextBASIC Text Windows

6 Memory address refers to an address location within the main memory map.
7 A font is a collection of a stylised graphical representation of characters . For the ZX Spectrum Next, this follows the

8x8 pixel matrix of the UDGs and it is exactly 768 bytes long (defining 96 characters in the 7-bit Sinclair ASCII series
from 32 to 128). See Appendix A for a list of characters.

codes coun ter parts. Be low is a list of all con trol codes that can be used while out put ting
to a Window Channel's stream:

J Code De scrip tion

UW SW

0 Turn justification off
Increases the current character set width (can
range from 3 to 8 pixels), and moves the
cursor to the start of the next line.

1 Turn justification on
Decreases the current character set width
(can range from 3 to 8 pixels), and moves the
cursor to the start of the next line.

2 Save current window contents
Causes the size 8 character set to be
replaced with the character set defined by the
CHARS system variable.

3 Restore saved window contents Causes the sizes 3 to 7 character sets to be
regenerated

4 Home cursor to top left

5 Home cursor to bottom left

´ 6 Tab to left or centre of window (PRINT ,)

7 Scroll window

´ 8 Move cursor left

´ 9 Move cursor right

10 Move cursor down

11 Move cursor up

´ 12 Delete character to left of cursor

13 Start new line (PRINT ')

14 Clear window to current attributes

15 Wash window with current attributes8

· 16, n Set INK n (where n=0 to 7)

· 17, n Set PAPER n (where n=0 to 7)

· 18, n Set FLASH n (where n=0 or 1)9

· 19, n Set BRIGHT n (where n=0 or 1)9

· 20, n Set INVERSE n (where n=0 or 1)

· 21, n Set OVER n (where n=0 or 1)

´ 22, y, x

Sets cursor to pixel line y, character size column x. (AT y,x). Position is specified in terms of
character positions (dependent upon the character size currently selected and whether
reduced-height text is in operation. Double-width and double-height do not affect the
coordinates, however)

´ 23, nLow, nHigh
TAB to (character sized) column n. This is a 16bit number so for column numbers smaller than
256, nHigh is always 0. Otherwise n is calculated as nLow+(nHigh*256)

· 24, n Sets ATTR n (Where n=0 to 255)10

´ 25, y, xLow, xHigh

Changes the print position to pixel coordinates x, y (0 to 511 and 0 to 191 respectively). Since
we may be running at Layer 1,2 mode (HiRes) and the x position may be higher than 256
pixels (ergo a value larger than what a single byte can hold) it breaks the x coordinate into two
byte components: xLow (0 to 255) and xHigh (0 to 1). For horizontal resolutions up to 256
pixels, xHigh is always 0 while for resolutions > 256 pixels it may be 0 or 1. The x coordinate
is calculated as (xLow)+(xHigh*256)

· 26, n

Auto-pauses every n character lines. After each n character lines have been scrolled out of the
window, output will automatically pause until the SPACE key is pressed (the bottom right
character in the window will be flashed to indicate SPACE is being waited for).
After a window has been cleared, the first pause occurs before any lines have been scrolled out;
subsequent pauses wait for n character lines. Typically you would want to set n to the height of
the window. If set to 0 (the default), auto-pause is disabled.

· 27, n Fills window with character n. Attributes and cursor position are affected.

ZX Spectrum Next – User Manual 251

System Windows vs User Windows Chapter 21 – Channels, Streams, Drivers and Windows

8 Has no effect on Layer 2 or LoRes
9 Ignored unless in Standard or HiColour modes and EnhancedULA is not enabled
10 Ignored in LoRes, Layer 2 and HiRes modes

J Code De scrip tion

UW SW

´ 28, n Sets double width (where n=1) or normal width (where n=0)

· 29
Sets height n (0=normal, 1=double, 2=reduced, 3=double reduced) – See Chapter 15 for
details

30, n
Selects justification mode n where n is
0=Left Justified , 1= Fully Justified and 2
=Centre Justified

Changes the current character set width to n
(can be 3,4,5,6,7 or 8 pixels), and moves
the cursor to the start of the next line.

31, n
Selects whether embedded codes are
permitted (1) or not (0) in justify mode

Causes the size n character set to be replaced
with the character set defined by the CHARS
system variable.

Ta ble 22 – Win dow con trol codes

In the ta ble above on the col umn marked as J an ´ means ig nored if is sued in jus ti fied
mode and an · means code can be used in jus ti fied mode only if the "em bed ded codes"
set ting has been en abled. For con trol codes nor mally ig nored in jus ti fied mode, note that
these will still be taken into ac count if you set them be fore en ter ing jus ti fied mode.

User character sets

If the de fault char ac ter set(s) are re placed us ing con trol codes 2, 3 or 31 in a sys tem win -
dow, any sub se quent text printed in any win dow (which does n't have its own user-de fined
char ac ter set) will use the new char ac ter set(s).

The sys tem-de fined char ac ter sets are par tially shared: sizes 3 and 4 use the same set
(only the leftmost 3 pix els are used for size 3), and sim i larly so do sizes 5 and 6. This
should be borne in mind when re plac ing sys tem char ac ter sets us ing con trol code 31.

Window input

Text win dows sup port the INPUT com mand. If you use INPUT #, then a cur sor is added to
the win dow at the cur rent po si tion. You can then in put any text de sired, us ing the left and
right ar rows to move along the text in put so far, or the up and down ar rows to move to the
start or end of the text.

The DELETE key de letes the char ac ter to the left of the cur sor, and the ENTER key com -
pletes the in put. Up to 191 char ac ters can be ac cepted into each in put vari able.

Window definitions

Since win dows are de fined us ing char ac ter squares so for ex am ple in LoRes, this means
the max i mum win dow size is 16 ´ 12 (and not 32 ´ 24). In HiRes how ever, char ac ter
squares are con sid ered to be 16 pix els wide, so the max i mum win dow size is still 32 ´ 24
pixels.

Mem ory con straints

It should be noted that sav ing/load ing win dow con tents (only avail able on user win dows)
is a costly op er a tion. The amount of mem ory re quired for each char ac ter square is:

•9 bytes (Layer 0)

•16 bytes (Layer 1 HiRes or HiColour)

•64 bytes (Layer 1 LoRes or Layer 2)

For ex am ple, a 10 x 10 win dow in Layer 2 re quires 6400 bytes of avail able mem ory for sav -
ing its con tents.

252 ZX Spectrum Next – User Manual

Chapter 21 – Channels, Streams, Drivers and Windows User character sets

Optional Features
(RTC, WIFI, RAM
and Accelerator)

The ZX Spectrum Next Mainboard with optional equipment locations

Diagram Legend

Description

A Real Time Clock

B WiFi module (ESP)

C RPi0 Accelerator

D Memory

WARNING! WARNING! WARNING! WARNING!
Before attempting any hardware addition, make sure all

power is disconnected first!!!
ALL USER APPLIED MODIFICATIONS COME AT THE

USER'S OWN RISK.
!!!!IRREPARABLE DAMAGE MAY OCCUR!!!

Optional Features

Overview

De pend ing on the model you have, your ZX Spec trum Next may have a num ber of op -
tional fea tures pre-in stalled. These are: RTC hard ware, a WiFi mod ule (ESP), ex tra RAM
and the Rasp berry Pi Zero (RPi0) ac cel er a tor. The fol low ing sec tions will de scribe how to
in stall and use them. Re mem ber that mod i fy ing your ZX Spec trum Next car ries a num ber
of risks and that if you are not care ful, you can damage your machine!

In stal la tion

Most add-ons are very easy to in stall with the ex cep tion of the Real Time Clock mod ule
and RPI0 ac cel er a tor. In stal la tion of the for mer, re quires sol der ing a num ber of parts onto
the board and should be un der taken only by us ers with sol der ing ex pe ri ence. We rec om -
mend us ing a spe cial ised ser vice, if you do not feel com fort able with a sol der ing iron. In -
stal la tion of the lat ter also re quires sol der ing ex pe ri ence but that's con fined on the RPi0
board it self and not on the ZX Spec trum Next. On the ta ble be low, we list all parts that you
will need to perform each upgrade:

Option Parts Needed Notes

1024K Memory upgrade 2 x Alliance AS7C34096A-10JCN –or–
2 x Samsung K6R4008V1D-JI10

Upgrades the memory
to 2048K

RTC module

1 x DS1037 IC
1 x YXC YT-38, 32.768KHZ, 12pF oscillator or similar
1 x CR2032 Battery holder
1 x CR2032 Battery 3.3V
1 x 8 pin DIL socket (optional)

Allows time and date
keeping that does not
rely on if your computer
is powered on

WiFi module ESP8266 ESP-01
Provides access to the
internet and your home
network

RPi Accelerator 1 x Raspberry Pi Zero
1 x Female IDC connector 2 x 20 pins

Various functions such
as enhanced audio

In stall ing a WiFi mod ule, only re quires you to pop u late the empty socket marked by a B on
the di a gram in the op po site page by plug ging in the ESP mod ule in the place reserved.

Mem ory is equally sim ple, how ever, care must be ex er cised in that the RAM sock ets ac -
cept larger chips than the ones the ZX Spec trum Next has. You need to line up the ori en ta -
tion notch (B) of each RAM chip (A) with the cor ner of the socket (D) leav ing space (C) in
the back of the socket. Once you have ev ery thing lined up, push with your fin ger at the
cen tre of the RAM chip and it should make a slight click. While push ing the RAM in (and
ev ery other mod ule) make sure you pro vide enough sup port on the ob verse so the board
does n't flex. Re fer to the fig ure be low on the proper in stal la tion of each RAM chip.

ZX Spectrum Next – User Manual 255

Overview Chapter 22 – Optional Features

Fig. 46 – Optional RAM upgrade installed

The Rasp berry Pi Zero (RPi0) ac cel er a tor re quires a lit tle bit of work. You will need to sol der
the 40 pin (2 x 20) FEMALE IDC header on the RPi0's GPIO through-holes. Un like what
would be nor mally ex pected the socket needs to be sol dered from the com po nent side,
there fore fac ing down wards. With a prop erly sol dered IDC header you need to be able to
see the RPi0's SD card reader and all its com po nents with the IDC header out of view like in
the fig ure be low:

The most com pli cated in stal la tion is the one of the RTC mod ule. It re quires you to sol der
the os cil la tor in the X1 lo ca tion of the board, a bat tery holder in the lo ca tion marked and fi -
nally the DS1037 IC in its place next to the bat tery holder pay ing at ten tion to the ori en ta tion
(marked by a notch on the sketch on the board as well as on the chip it self). It's ad vis able
that you in stall a 8 pin DIL socket in stead of the DS1037 IC as heat may damage it during
soldering.

Pay very close at ten tion on the sol der ing of the os cil la tor; the through holes are very small
and need to be free of any flux or sol der res i due as this will stop the os cil la tor from work -
ing. Fi nally, you will need to in stall the bat tery in the socket oth er wise the RTC will only
work for as long as the ma chine is powered.

Testing the add-ons' installation

Once you have your add-ons in stalled, it is time to test them; we'll start with the eas ier tests
first and we'll prog ress to the most dif fi cult ones.

A. Test ing the mem ory

This is by far the sim plest test; if your mem ory in stal la tion worked, your NextZXOS Startup
menu will re port 1792K in stead of the 768K it re ported up un til now (see Fig. 48).

To fur ther ver ify that the mem ory was prop erly in stalled, there's a pro gram called
ramtest2.snx lo cated un der c:/tools/ in your Sys tem/Next™ dis tri bu tion.

Ex e cute it with the browser or by us ing the SPECTRUM com mand and let it go through all
your mem ory test ing it's work ing prop erly (see Fig. 49 and 50).

In case that some thing went wrong, your mem ory chips are ei ther de fec tive or you did n't
in stall them prop erly. Make sure your mem ory chips are prop erly seated in their sock ets

256 ZX Spectrum Next – User Manual

Chapter 22 – Optional Features Testing the add-ons' installation

Fig. 47 – Raspberry Pi 0 accelerator installed (with WiFi module in view (left)

Fig. 48 – NextZXOS reporting 2M

by a. check ing the space is left as in Fig. 46 and b. press ing them firmly in their socket un til
you hear a sub tle “click” sound. If the mem ory test still fails, your mem ory chips are prob a -
bly defective.

B. Test ing the WiFi

Test ing that the WiFi fea ture was prop erly in stalled, in volves a bit of typ ing. There are many
ways to go about it but the eas i est of all is to use the .uart dot com mand or the wifi.bas
pro gram lo cated un der c:/de mos/esp in your Sys tem/Next™ dis tri bu tion. .uart is not very
com pli cated but it's quite tem per a men tal es pe cially if you use a PS/2 key board. You will
need to use the stan dard ZX Spec trum keys; CAPS SHIFT + 0 for DELETE, SYMBOL
SHIFT + K for +, SYMBOL SHIFT + C for ?, SYMBOL SHIFT + P for " and SYMBOL
SHIFT + L for =.

You run it by is su ing a:

.uart

you will be greeted by a screen full of in for ma tion that will end in an L cur sor. To test type
the fol low ing:

AT

and press ENTER

If you're good so far, the ESP will be re spond ing with:

OK

That's a very good sign. That means se rial com mu ni ca tions have been es tab lished. To
see how ever if the ESP is ac tu ally work ing you'll need to is sue a few more com mands.
Type:

AT+CWMODE?

the ESP there should re spond with a 1, 2 or 3 (this is the mode that's its work ing at; be ing 1
for Sta tion, 2 for Ac cess Point and 3 for both). Nor mally this should be enough to ver ify
your ESP is work ing but if you want to take it one step fur ther, you should set the ESP to
sta tion mode by giving:

AT+CWMODE=1

then check for what Ac cess Points are around by do ing:

AT+CWLAP

be fore fi nally con nect ing to one by giv ing the com mand:

ZX Spectrum Next – User Manual 257

Testing the add-ons' installation Chapter 22 – Optional Features

Fig. 49 – ramtest2 running Fig. 50 – ramtest2 completed OK

AT+CWJAP="SSID","YourPass"

where SSID is the name of your net work and YourPass is your WiFi pass word. The ESP will
re tain these so you can do if you want:

AT+RST

which will re set your ESP and give you a lot of in for ma tion be fore con clud ing with a

WIFI CONNECTED

WIFI GOT IP

Exit .uart by press ing SYMBOL SHIFT + SPACE. If none of this worked, then the most
likely cul prits are that you ei ther have a bad ESP mod ule or that the power sup ply you're
us ing is not pow er ful enough for both your ZX Spectrym Next and the ESP mod ule. First try
with a dif fer ent power sup ply, oth er wise re turn the ESP mod ule for an exchange.

Note that dif fer ent ESP firm ware ver sions have slightly dif fer ent ver sions of the com mands
above so al ways con sult the most up-to-date doc u men ta tion!

C. Test ing the RTC in stal la tion

There's a very sim ple way of test ing for the RTC and that's to give it the .time com mand. If it
does n't work out right, it will pro duce an out put like the fol low ing:

There are a few is sues that can oc cur with the RTC; if the out put is as above, the most likely
cul prit is the sol der ing of the IC onto the board. A cold sol der will leave the RTC not work -
ing, a short some where will do the same but the RTC IC will start get ting hot. If you feel the
IC warm ing up dis con nect all power im me di ately and in spect your soldering.

A de fec tive bat tery holder in stal la tion as well as a de fec tive (or de pleted) bat tery will man i -
fest it self with the RTC not keep ing time upon bootup and NextZXOS not dis play ing the
time and date in for ma tion on its Startup menu. Set ting the time and date anew, how ever,
will re store the time display.

If on the other hand the com mands de scribed in the Us ing the Real Time Clock hard ware
sec tion be low do work, the time and date in for ma tion ap pear in the Startup menu but time
does not ad vance, then the is sue lays usu ally with ei ther the os cil la tor or the pins of the
DS1307 IC these con nect to. There's ei ther a short some where or even a sit u a tion as sim -
ple as left over flux from sol der ing. The os cil la tor can be dam aged quite eas ily so make
sure there's no con ti nu ity on its two legs be fore even turn ing the power on and in sert ing
the battery in the holder.

D. Test ing the Ac cel er a tor in stal la tion

Be fore you can test that the ac cel er a tor is work ing, there is a num ber of things you need to
do: First find a 1Gb or larger microSD Card and then you need to down load the NextPi dis -
tri bu tion from: http://zx.xalior.com/NextPi to gether with the in struc tions that ac com pany
it.

258 ZX Spectrum Next – User Manual

Chapter 22 – Optional Features Testing the add-ons' installation

Fig. 51 – RTC not working

Once you pre pare the SD card ac cord ing to the in struc tions put it in your Pi Ac cel er a tor
prior to boot ing up your ZX Spec trum Next. Trans fer the sup port pro grams into a folder of
your choos ing on your Sys tem/Next™ dis tri bu tion's SD, then power up the machine.

If you have ac cess to the RPi0 you should see the green led flash ing while the ZX Spec -
trum Next is boot ing; that's a good first sign show ing that the RPi0 is load ing its NextPi dis -
tri bu tion. The LED will even tu ally stop flash ing and should turn into a steady green. Once
you're all booted up, change to the folder you placed the NextPi sup port files and lo cate
and ex e cute (with the browser or with the SPECTRUM com mand) terminex.snx by Da vid
Saphier. If the RPi0 in stal la tion worked, you will see a mes sage stat ing Con nec tion to
NextPi es tab lished fol lowed by a SUP> prompt which means your RPi in stal la tion was
suc cess ful as shown in the figure below.

If the SUP> prompt does not ap pear af ter a max i mum of 20-25 sec onds, that means
there's some thing wrong. That does n't mean your RPi0 is not work ing; es pe cially if you
saw the flash ing green LED light on it ear lier. This more than likely means that you did n't
trans fer the NextPI im age prop erly or that there's some prob lem with the microSD card
you used.

To ver ify the RPi0 is work ing, you will need to un plug it from your ZX Spec trum Next, lo cate
a mi cro usb power sup ply, an ap pro pri ate HDMI™ ca ble and a stan dard RPi0 dis tri bu tion
and power it in de pend ently.

If you can see out put on the screen, then there's ei ther a prob lem with your NextPI SD card
(which you can ver ify by plug ging its microSD card in the RPi0's reader in stead of the stan -
dard RPi0 dis tri bu tion), a cold sol der on your IDC con nec tor you sol dered ear lier, or, fi -
nally, a not pow er ful enough power sup ply for your ZX Spectrum Next.

The RPi0s are very re sil ient pieces of hard ware and they don't fail eas ily; chances are any
fail ure you ex pe ri ence is due to one of the cases listed.

Using the Real Time Clock hardware

If you're lucky to have an ex panded ZX Spec trum Next with the bat tery backed-up Real
Time Clock (RTC) hard ware in stalled (or if you fol lowed the in struc tions to in stall it your -
selves) then more op tions in timekeeping be come avail able to you. These op tions do not
suf fer from the draw backs and ca ve ats laid out in the pre vi ous sec tions as this ded i cated
hard ware op tion keeps time re gard less of what else the com puter is do ing and in fact
keeps time even when the computer is turned off.

The RTC is only ac ces si ble via two dot com mands: .date and .time.

Set ting up your RTC for first use

Be fore you can use .date and .time you will need to set up your Real Time Clock hard ware.
Luck ily this is only done once when you in stall it and when ever you need to change bat -
tery. You will ini tially (for safety) need to is sue the com mand:

ZX Spectrum Next – User Manual 259

Using the Real Time Clock hardware Chapter 22 – Optional Features

Fig. 52 – RPi Supervisor prompt via Terminex

.time -di

This wipes the RTC sig na ture from the chip and gets it ready to ac cept a date and time.
You can then type:

.time "10:35:23"

where "10:35:23" can be sub sti tuted by any string of the for mat HH:MM:SS where HH
(hour) is a num ber from 00 to 23 , MM (min ute) is a num ber from 00 to 59 and SS (sec ond)
is a num ber from 00 to 59. You then en ter the cor rect date by issuing:

.date "18/08/2018"

where "18/08/2018" can be sub sti tuted by any string of the for mat DD/MM/YYYY where
DD is the day (01 to 31), MM is the month (01 to 12) and YYYY is any year from 2000 to
2099.

A few in ter est ing things will hap pen once you in stall and setup your RTC. First, NextZXOS
will re port the time and date on its Startup menu (which is very nice in deed). Then, your
saved files will start hav ing a date and timestamp on them (vis i ble with CAT EXP or .ls).

Using the RTC together with the WiFi module

The RTC mod ule is not very ac cu rate and can lose sev eral sec onds over the pe riod of a
few weeks. Luck ily, like other, much larger sys tems, the ZX Spec trum Next can also set its
time from the internet, thanks to .nxtp, the dot com mand cli ent to Robin Verhagen-Guest's
NeXt Time Pro to col server. Its syntax is:

.nxtp server-ad dress port [-z=Timezone]

where server-address is a FQDN or IP ad dress run ning a nxtp server, port is the port where
that nxtp server is lis ten ing to (by de fault 12300) and an op tional timezone pa ram e ter to
set the time to any lo ca tion you would like from a list of ac cept able timezones.

.nxtp time.nxtel.org 12300 -z=UTC

will talk to the the nxtp server lo cated at time.nxtel.org, lis ten ing on port 12300 and set the
RTC's time to Co or di nated Uni ver sal Time (UTC) whereas

.nxtp time.nxtel.org 12300 -z=GMT

will do the same but for Green wich Mean Time mean ing the time will ad just for sum mer
giv ing you BST and win ter giv ing you UTC, as .nxtp al ready knows about day light sav ings.
It will work this into your RTC's time set ting mean ing you never have to worry about set ting
your clock in the sum mer or win ter pro vided your lo ca tion observes these.

A full list of ac cepted timezones ex ists at the .nxtp pro ject's wiki page lo cated at:
https://github.com/Threetwosevensixseven/nxtp/wiki/Timezone-Codes

It is a good idea, if you have an al ways work ing WiFi setup, to add .nxtp to your
autoexec.bas file so it al ways sets up the cor rect time upon your ZX Spec trum Next's boot.
The po ten tial startup de lay is very small and the ben e fit of al ways hav ing cor rect time out -
weighs the delay.

Using the rest of the add-ons

Both the WiFi and Rasp berry Pi Ac cel er a tor add-ons open up ex cit ing fea tures not be fore
seen on a ZX Spec trum com puter. This chap ter pro vides only lim ited cov er age as the
featureset of both is still evolv ing. We have in cluded all fea tures im ple mented thus far (Au -
dio play back, TZX load ing, DRIVER sup port etc) in Chap ters 19, 20, 21 and this chap ter,
how ever, you're en cour aged to read the ac com pa ny ing doc u men ta tion found in your Sys -
tem/Next™ dis tri bu tion and on www.specnext.com as they will al ways con tain the most
up-to-date in for ma tion re gard ing these add-ons and newer ZX Spectrum Next features.

260 ZX Spectrum Next – User Manual

Chapter 22 – Optional Features Using the RTC together with the WiFi module

IN, OUT and the
Next Registers

*** This page intentionally left blank ***

IN, OUT and the Next Registers

We can in struct the pro ces sor to read from and (at least with RAM) write to mem ory by us -
ing PEEK, POKE and their vari ants. For all the pos si bil i ties, ex am ine Chap ter 24 – The
Mem ory. The pro ces sor it self does not re ally care whether mem ory is ROM, RAM or even
noth ing at all; it just knows that there are 65536 mem ory ad dresses, and it can read a byte
from each one, even if it's non sense, and write a byte to each one, even if it gets lost be -
cause the ad dress is read-only. In a com pletely anal o gous way, there are also 65536
hard ware ad dress, called I/O ports (nput/Out put ports). These are used by the pro ces sor
for com mu ni cat ing with at tached de vices like the key board or the dis play, and they can be
con trolled from NextBASIC by us ing the IN func tion and the OUT state ment. Six I/O ports
that are spe cific to the ZX Spec trum Next and con trol its ad vanced func tions; they too, are
ac ces si ble with IN and OUT, but two of them, are also accesible via a spe cial dual state -
ment/func tion, called REG.

IN and OUT

IN is a func tion like the sim plest form of PEEK:

IN port

It has one ar gu ment, the hard ware ad dress port, and its re sult is a byte read from that port.
OUT on the other hand is a state ment like a sim ple POKE:

OUT port, v

which writes value v to the hard ware ad dress port.

Hardware address decoding

How the ad dress is in ter preted de pends on the hard ware in the com puter and at tached
de vices. In pre vi ous ver sions of the ZX Spec trum line of com put ers and es pe cially in leg -
acy pe riph er als, many dif fer ent port ad dresses mapped to the same de vice. This is called
par tial de cod ing and hap pened be cause some ad dress bits were ig nored in the hard ware
to save on cost. As a con se quence, en tire ranges of port ad dresses were re served by in di -
vid ual pe riph er als. This made it hard for new pe riph er als to find non-con flict ing ports to
use and, in re al ity, many did not and only man aged to use ports that did n't con flict with the
most pop u lar pe riph er als. The sit u a tion was some what mit i gated by the fact that only a
cou ple of pe riph er als could be con nected to the older ZX Spec trum ma chines at once,
due to elec tri cal lim i ta tions. To day, where mod ern ZX Spec trum im ple men ta tions pack
many de vices into their hard ware, this port con flict prob lem re turns with re newed ur gency,
as any pair of devices with conflicting port addresses are not compatible with each other.

The ZX Spec trum Next fully de codes port ad dresses for new pe riph er als (mean ing it does
not ig nore any ad dress line), but be cause a lot of the hard ware it con tains is based on ex -
ist ing de vices, those must con tinue to be par tially de coded. In or der to best un der stand
the is sues at hand, and in the ta ble that fol lows which con tains all port ad dresses avail -
able on the ZX Spec trum Next, it is best if we ap proach them as writ ten in bi nary. That way
we can eas ily show which bits are be ing ig nored by a spe cific pe riph eral. Each hard ware
ad dress is 16 bits wide, which we shall call (us ing A for address):

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

Here A0 is the 1st bit, A1 the 2nd bit, A2 the 4th bit and so on. The ta ble that fol lows shows
which bits are im por tant for the cor re spond ing de vice. For ex am ple, the ULA only needs
A0 to be 0 in or der to re spond, which means it will re spond to all 3768 even port ad dresses
and not just its of fi cial port 254 (FEh). The byte read or writ ten has 8 bits, and these are of -
ten re ferred to (us ing D for data) as:

D7 D6 D5 D4 D3 D2 D1 D0

ZX Spectrum Next – User Manual 263

IN and OUT Chapter 23 – IN, OUT and the Next Registers

Here is a list of the port ad dresses used with their de cod ing. For the rea son men tioned,
only the ULA has an even port addres and ev ery even-num bered port IN will re sult in the
ULA be ing read.

R W

A
1
5

A
1
4

A
1
3

A
1
2

A
1
1

A
1
0

A
0
9

A
0
8

A
0
7

A
0
6

A
0
5

A
0
4

A
0
3

A
0
2

A
0
1

A
0
0

Port
(Hex) Description

n n 0 FEh ULA

n n 1 1 1 1 1 1 1 1 FFh Timex video, Floating bus

n 0 0 1 7FFDh Memory Paging Control

n 0 1 0 1 7FFDh Memory Paging Control (+3 only)

n 1 1 0 1 0 1 DFFDh Next Memory Bank Select1

n 0 0 0 1 0 1 1FFDh +3 Memory Paging Control

n 0 0 0 0 0 1 +3 Floating bus

n n 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 1 243Bh NextREG Select

n n 0 0 1 0 0 1 0 1 0 0 1 1 1 0 1 1 253Bh NextREG Data

n n 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 1 103Bh I2C SCL

n n 0 0 0 1 0 0 0 1 0 0 1 1 1 0 1 1 113Bh I2C SDA

n n 0 0 0 1 0 0 1 0 0 0 1 1 1 0 1 1 123Bh Layer 2

n n 0 0 0 1 0 0 1 1 0 0 1 1 1 0 1 1 133Bh UART Tx

n n 0 0 0 1 0 1 0 0 0 0 1 1 1 0 1 1 143Bh UART Rx

n n 0 0 0 1 0 1 0 1 0 0 1 1 1 0 1 1 153Bh UART control

n 1 0 1 1 1 1 1 1 0 0 1 1 1 0 1 1 BF3Bh ULAplus Register

n n 1 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 FF3Bh ULAplus Data

n n 0 1 1 0 1 0 1 1 6Bh zxnDMA

n n 1 1 1 0 1 FFFDh AY Register

n 1 0 1 0 1 BFFDh AY Data (readable on +3 personality)

n 0 0 0 1 1 1 1 1 1Fh DAC A

n 1 1 1 1 0 0 0 1 F1h DAC A2

n 0 0 1 1 1 1 1 1 3Fh DAC A

n 0 0 0 0 1 1 1 1 0Fh DAC B

n 1 1 1 1 0 0 1 1 F3h DAC B

n 1 1 0 1 1 1 1 1 DFh DAC A,D

n 1 1 1 1 1 0 1 1 FBh DAC A,D

n 1 0 1 1 0 0 1 1 B3h DAC B,C

n 0 1 0 0 1 1 1 1 4Fh DAC C

n 1 1 1 1 1 0 0 1 F9h DAC C2

n 0 1 0 1 1 1 1 1 5Fh DAC D

n 1 1 1 0 0 1 1 1 E7h SPI CS (SD card, Flash, RPi0)

n n 1 1 1 0 1 0 1 1 EBh SPI DATA

n n 1 1 1 0 0 0 1 1 E3h divMMC control

n 1 0 1 1 1 1 0 1 1 1 1 1 FBDFh KEMPSTON Mouse X

n 1 1 1 1 1 1 0 1 1 1 1 1 FFDFh KEMPSTON Mouse Y

n 1 0 1 0 1 1 0 1 1 1 1 1 FADFh KEMPSTON Mouse Wheel, Buttons

n 0 0 0 1 1 1 1 1 1Fh KEMPSTON Joystick 1

n 0 0 1 1 0 1 1 1 37h KEMPSTON Joystick 2

n n 0 0 0 1 1 1 1 1 1Fh Multiface 1 Disable

n n 1 0 0 1 1 1 1 1 9Fh Multiface 1 Enable

n n 0 0 1 1 1 1 1 1 3Fh Multiface 128 Disable

n n 1 0 1 1 1 1 1 1 BFh Multiface 128 Enable

n n 1 0 1 1 1 1 1 1 BFh Multiface +3 Disable

n n 0 0 1 1 1 1 1 1 3Fh Multiface +3 Enable

n n 0 0 1 1 0 0 0 0 0 0 1 1 1 0 1 1 303Bh Sprite slot flags

n 0 1 0 1 0 1 1 1 57h Sprite Attributes

n 0 1 0 1 1 0 1 1 5Bh Sprite Pattern

264 ZX Spectrum Next – User Manual

Chapter 23 – IN, OUT and the Next Registers Hardware address decoding

1 Precedence over AY
2 Precedence over xxFD

Be fore we look at other ports and pro vide some ex am ples,let us look at the six ports the
ZX Spec trum Next uses to con trol its spe cial fea tures. These are in or der: the Next Reg is -
ters (Con trolled by two ports; Se lect and Data), the Layer 2 port and the Sprite con trol ports
(Con trol, At trib utes and Data). Of these, the most im por tant to learn about is the Next Reg -
is ter (NextREG) with which you con trol al most all the ma chine's fea tures. NextREG, from a
pro ces sor per spec tive (but also from NextBASIC) is ac cessed with two con sec u tive OUT
com mands: The first, to the Se lect port 9275 (243Bh) to se lect a spe cific reg is ter and the
sec ond to the Data port 9531 (253Bh) to mod ify the value stored there. If given from
NextBASIC, these com mands must be given to gether as NextBASIC may do some thing
dif fer ent with NextREG in-be tween com mands. If you give the first and then wait to give the
sec ond, NextBASIC may have changed the Se lect reg is ter in the mean time; so by giv ing
them to gether you give it no time to do some thing else. In or der to read the value of a reg -
is ter (if this can be read), you still need to do an OUT to port 9275 and then a con sec u tive
IN from port 9531. The Z80n CPU the ZX Spec trum Next has, also pro vides a spe cial
NEXTREG com mand and this is ref er enced in Ap pen dix A. As men tioned in the in tro duc -
tion, NextBASIC also has a spe cial ised com mand and func tion to read NextREG which is
much eas ier to use. How ever we'll give both meth ods here, in or der for you to be able to
use them even from 48K BASIC as the Next fa cil i ties are still avail able there but with out
NextBASIC to make ac cess to them eas ier. The com mand as men tioned ear lier is REG
and as a statement it has the form:

REG n,v

which is es sen tially the same as do ing: OUT 9275, n:OUT 9531, v. Ob vi ously n is the reg -
is ter num ber and v is the value we mod ify the reg is ter with. As a func tion, REG has the fol -
low ing form:

% REG n

as it al ways re turns bytes, so it's part of the in te ger ex pres sion eval u a tor. This es sen tially is
the same as ex e cut ing OUT 9275, n: LET %x = % IN 9531. Let's give one sim ple ex am ple
in both forms and let's mix–and-match a bit as well to show the equivalency:

As sum ing we want to change speeds to 28MHz, we could give:

RUN AT 3

or

OUT 9275, 7:OUT 9531, 3

and we can ver ify it's set by ei ther bring ing up any NextBASIC menu (menus list the cur -
rently set speed) with the EDIT key or by do ing:

OUT 9275,7: PRINT % IN 9531 & @11

Which is the same as

PRINT % REG 7&@11

You can ver ify this ac tu ally changes things by do ing a RUN AT 2 and give the OUT/IN se -
quence again. As you will see from the list that fol lows, not ev ery NextREG is ded i cated
solely to one func tion; in this case the only bits that con cerned us were Bits 0 and 1 and
that's why we used a 2-bit bitmask with the bitwise AND op er a tor &. For the same ex am ple
us ing just the REG com mand, our line would have been as simple as:

REG 7,3

We'll list all of NextREGs be low in nu mer i cal or der. Not ev ery reg is ter is ac ces si ble, so pay
at ten tion to the key at the start of the list to un der stand whether a reg is ter can be read, writ -
ten or both.

ZX Spectrum Next – User Manual 265

Hardware address decoding Chapter 23 – IN, OUT and the Next Registers

The Next Registers
Next Register Diagrams' Key

Reserved value in either R(ead) or W(rite) condition but used in the inverse – Not Applicable

Reserved value - Not Applicable

X Reserved value MUST be X

Not Applicable / Don't care

R Read (if marked). Unmarked means Not Applicable

W Write (if marked). Unmarked means Not Applicable

H Hard Reset / Soft Reset / Config Mode. Unmarked means Soft Reset if there's a value in column D

D Contains the default value after a reset (Soft, Hard or Config as marked in column H).* refers to notes below

n In columns R/W marks the status of the register. In column H means Hard Reset

u Means Config Mode

l Means any value (0 or 1)

N Any letter in a data bit position refers you to the notes below

NextREG 00 (00h) – Machine ID

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Machine ID n

0 0 0 0 0 0 0 1 DE1A

0 0 0 0 0 0 1 0 DE2A

0 0 0 0 0 1 0 1 FBLABS

0 0 0 0 0 1 1 0 VTRUCCO

0 0 0 0 0 1 1 1 WXEDA

0 0 0 0 1 0 0 0 EMULATORS*

0 0 0 0 1 0 1 0 ZX Spectrum Next*

0 0 0 0 1 0 1 1 Multicore

1 1 1 1 1 0 1 0 ZX Spectrum Next Anti-Brick*

Set tings with * in di cate their rel e vance for ZX Spec trum Next ma chines and Soft ware

NextREG 01 (01h) – Core Version

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Minor Version Number n l l l l Minor Version

Major Version Number n l l l l Major Version

See NextREG 14 (0Eh) for sub mi nor ver sion num ber

NextREG 02 (02h) – Reset

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Last System Reset Type1 n
0 1 Soft Reset

1 0 Hard Reset

Reserved n Reserved

ESP/Expansion Bus RESET flag n
0 RESET not asserted

n 0
1 RESET asserted

Generate System Reset n
0 1 Generate Soft Reset

1 0 Generate Hard Reset (reboot)

Reserved n 0 0 0 0 0 Reserved (must be 0)

Generate ESP/Exp. Bus Reset2 n l Generate/Release Reset (Exp. Bus & ESP)

1 If read in NextZXOS a 1 will be re turned as the boot ing pro cess gen er ates a Soft Re set
2 A full re set cy cle for the ESP and Ex pan sion Bus, re quires set ting D7 first to 1 and then to

0. If not ex plic itly re leased the Ex pan sion Bus and ESP will stay with RESET as serted un til
the next sys tem hard reset
Of D0 – D1 only one bit can be set and Hard re set has pre ce dence

NextREG 03 (03h) – Machine Type

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Machine Type n n

0 0 0 Configuration mode

u

0 0 1 ZX 48K

0 1 0 ZX 128K / +2

0 1 1 ZX +2A/ +2B/ +3/ Next

1 0 0 Soviet Clones (PENT)

Display Timing user lock
control

n
0 No User Lock on display timing applied

1 User lock on display timing

n 1 Apply User Lock on Display Timing n 0

Display Timing n n

0 0 0 Internal Use

0 0 1 ZX 48K

0 1 0 ZX 128K / +2

0 1 1 ZX +2A/ +2B/ +3/ Next

1 0 0 Soviet Clones (PENT)*

Display Timing change enable n l Allow changes to D4:6 0

* So viet Clones (PENT) tim ing is 50 Hz only.
A write to this reg is ter dis ables the boot rom in con fig u ra tion mode
D0 through D2 se lect ma chine type when in con fig u ra tion mode. Se lec tion may af fect port
de cod ing and en abling of some hardware

NextREG 04 (04h) – Configuration Mapping

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

16K SRAM bank mapping n l l l l l Maps a 16K SRAM Bank no. (0-31)* n 0

Reserved n 0 0 0 Reserved, must be 0

* Maps a 16K SRAM bank over the bot tom 16K. Ap plies only in con fig u ra tion mode when
the boot rom is dis abled

NextREG 05 (05h) – Peripheral 1 Settings

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Scandoubler n n
0 Scandoubler Disabled

1 Scandoubler Enabled

Vertical Frequency n n
0 50 Hz mode

1 60 Hz mode*

Joystick 1 n n

0 0 0 Sinclair 2 (67890)

0 0 1 Kempston 2 (Port 37h)

0 1 0 Kempston 1 (Port 1Fh)

0 1 1 Megadrive 1 (Port 1Fh)

1 0 0 Cursor

1 0 1 Megadrive 2 (Port 37h)

1 1 0 Sinclair 1 (12345)

Joystick 2 n n

0 0 0 Sinclair 2 (67890)

0 0 1 Kempston 2 (Port 37h)

0 1 0 Kempston 1 (Port 1Fh)

0 1 1 Megadrive 1 (Port 1Fh)

1 0 0 Cursor

1 0 1 Megadrive 2 (Port 37h)

1 1 0 Sinclair 1 (12345)

* So viet Tim ings have no 60 Hz mode; when in So viet Tim ings, ev ery set ting is 50 Hz.

NextREG 06 (06h) – Peripheral 2 Settings

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

PSG Mode Control n n

0 0 YM

0 1 AY

1 1 Hold all PSGs in Reset

PS/2 Mode Control n n
0 Keyboard Primary

u 1
1 Mouse Primary

NMI Button Control n n l NMI button enable* n 0

divMMC Automap/NMI Control n n l divMMC Automap and NMI** button enable n 0

F3 Hotkey Control n n l 50Hz / 60Hz hotkey toggle Enable 1

DMA Mode Control n n
0 zxnDMA

n 0
1 Z80DMA

F8 Hotkey Control n n l CPU Speed hotkey Enable 1

* NMI but ton re fers to the but ton to the right side of the SD Card reader
** Re fers to the Drive but ton to the left side of the SD Card reader

NextREG 07 (07h) – CPU Speed

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

CPU Speed Control n n

0 0 3.5 MHz

*
0 1 7 MHz

1 0 14 MHz

1 1 28 MHz

Reserved n 0 0 0 0 0 0 Reserved, must be 0

Reserved n 0 0 0 0 Reserved, must be 0

Current Actual1 CPU Speed n

0 0 3.5 MHz

0 1 7 MHz

1 0 14 MHz

1 1 28 MHz

* Soft re set de faults this to 00
1 Cur rent Ac tual speed may dif fer from the set speed due to Ex pan sion Bus use, or an other

forced change.

NextREG 08 (08h) – Peripheral 3 Settings

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Issue 2 Keyboard n n l Enable Issue 2 keyboard n 0

NextSound l Enable Multiple PSGs n 0

Timex Video Port Control n n l Enable read of Port FFh (Timex) n 0

DACs Control l Enable DACs (A-B-C-D) n 0

Internal Speaker Control n n l Enable Internal Speaker n 1

PSG Stereo Mode Control n n
0 Select ABC

n 0
1 Select ACB

Contention Control n n l Disable RAM and Port Contention 0

128K Banking Unlock Control n n l Unlock Port 7FFDh D5 (Unlocked = 1) 0

NextREG 09 (09h) – Peripheral 4 Settings

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Scanline Strength n n

0 0 Scanlines off

0 1 Scanlines at 75%

1 0 Scanlines at 50%

1 1 Scanlines at 25%

HDMI audio output Control n n l HDMI audio mute n 0

divMMC mapRAM bit Control n n l Reset bit 6 port E3h (Read is always 0)

Spite Lockstep Control n n l Enable Sprite ID Lockstep 0

PSG 0 Mono Mode Control n n l Enable Mono n 0

PSG 1 Mono Mode Control n n l Enable Mono n 0

PSG 2 Mono Mode Control n n l Enable Mono n 0

In Sprite Lockstep, NextREG 52 (34h) and Port 12347 (303Bh) are in Lockstep.

266 ZX Spectrum Next – User Manual

Chapter 23 – IN, OUT and the Next Registers The Next Registers

ZX Spectrum Next – User Manual 267

The Next Registers Chapter 23 – IN, OUT and the Next Registers
NextREG 14 (0Eh) – Core Version (Sub minor number)

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Sub Minor Number n l l l l l l l l Core Sub Minor Version Number

See NextREG 01 (01h) for Ma jor and Mi nor Core Ver sion

NextREG 16 (10h) – Core Boot

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

NMI Button State Flag n l NMI Button Pressed

Drive Button State Flag n l Drive Button Pressed

Reserved n 0 0 0 0 0 0 Reserved, must be 0

Core ID n l l l l l Core ID (0-31) u

Reserved n 0 0 Reserved, must be 0

Start Core n l Reboot FPGA using selected core 0

Core ID with D0 through D4 can be set in con fig u ra tion mode only

NextREG 17 (11h) – Video Timing

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

VGA Timing n n

0 0 0 Base VGA timing, clk28 = 28000000

u

0 0 1 VGA setting 1, clk28 = 28571429

0 1 0 VGA setting 2, clk28 = 29464286

0 1 1 VGA setting 3, clk28 = 30000000

1 0 0 VGA setting 4, clk28 = 31000000

1 0 1 VGA setting 5, clk28 = 32000000

1 1 0 VGA setting 6, clk28 = 33000000

1 1 1 Digital, clk28 =27000000

Reserved n n 0 0 0 0 0 Reserved, must be 0

50Hz/60Hz de pends on NextREG 5 (05h):D2 – There is no 60Hz mode for So viet Tim ings
NextREG writable in con fig u ra tion mode only

NextREG 18 (12h) – Layer 2 Active RAM Bank

Data Bits

Group Name R W 7 6 5 4 3 2 1 0 Description H D

Layer 2 Active RAM Bank n n l l l l l l l Starting 16K RAM Bank

Reserved n n 0 Reserved, must be 0

Soft re set, re sets the de fault to 8. NextZXOS changes that to 9

NextREG 19 (13h) – Layer 2 Shadow RAM Bank

Data Bits

Group Name R W 7 6 5 4 3 2 1 0 Description H D

Layer 2 Shadow RAM Bank n n l l l l l l l Starting 16K RAM Bank

Reserved n n 0 Reserved, must be 0

Soft re set, re sets the de fault to 11. NextZXOS changes that to 12

NextREG 20 (14h) – Global Transparency Colour

Data Bits

Group Name R W 7 6 5 4 3 2 1 0 Description H D

Global Transparency Mask n n l l l l l l l l 8-bit colour value

De fault value upon soft re set is E3h (227)
This value is 8-bit; the trans par ency col our is com pared against the MSB of the ac tual 9-bit
col our; as such, two colours (with ei ther value of B0) are made trans par ent
This set ting only ap plies to Layer 2, Layer 0 and Layer 1. Sprites use NextREG 75 (4Bh)
and Layer 3 uses NextREG 76 (4Ch) for trans par ency

NextREG 21 (15h) – Sprite and Layer System Setup

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Sprite Engine Control n n l Enable Sprites 0

Sprite Extended Area Control n n l Enable Sprites over border 0

Set Layer Priority n n

0 0 0 S L U

*

0 0 1 L S U

0 1 0 S U L

0 1 1 L U S

1 0 0 U S L

1 0 1 U L S

1 1 0 S(U+L): ULA and Layer 2 combined1

1 1 1 S(U+L-5): ULA and Layer 2 combined2

Sprite Border Clipping n n l Enable Sprite Clipping in over border mode 0

Sprite Priority n n
0 Sprite 127 on top

0
1 Sprite 0 on top

LoRes Control n n l Enable LoRes 0

* De fault value upon soft re set is 000
1 Colours Clamped to 7
2 Colours Clamped to [0,7]

ULA means all ULA modes: Lay ers 0 and all Layer 1 com bi na tions

NextREG 22 (16h) – Layer 2 Horizontal Scroll Control

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

X Offset n n l l l l l l l l 8-bit value of X Offset (0 – 255) 0

NextREG 23 (17h) – Layer 2 Vertical Scroll Control

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Y Offset n n l l l l l l l l 8-bit value of Y Offset (0 – 191) 0

NextREG 24 (18h) – Layer 2 Clip Window Definition

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Coordinate (Xbeg,Xend,Ybeg,Yend) n n l l l l l l l l 8-bit value of Xbeg,Xend,Ybeg,Yend coordinate1 *

1 Pos si ble val ues 0 to 255 or 0 to 191 de pend ing on the co or di nate be ing written
1st Write Xbeg po si tion – *De fault value upon re set is 0 – Ad vance to Xend

2nd Write Xend po si tion – *De fault value upon re set is 255 – Ad vance to Ybeg

3rd Write Ybeg po si tion – *De fault value upon re set is 0 – Ad vance to Yend

4rh Write Yend po si tion – *De fault value upon re set is 191 – Ad vance to Xbeg

Reads do not ad vance the clip po si tion – Use NextREG 28 (1Ch):D0 through D1 to read
the po si tion. If need be write to NextREG 28 (1Ch):D0 to re set the clip in dex and then do
con sec u tive writes and reads to get to the value you're search ing for

NextREG 25 (19h) – Sprites Clip Window Definition

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Coordinate (Xbeg,Xend,Ybeg,Yend) n n l l l l l l l l 8-bit value Xbeg,Xend,Ybeg,Yend coordinate1 *

1 Pos si ble val ues 0 to 255 or 0 to 191 de pend ing on the co or di nate be ing written
1st Write Xbeg po si tion – *De fault value upon re set is 0 – Ad vance to Xend

2nd Write Xend po si tion – *De fault value upon re set is 255 – Ad vance to Ybeg

3rd Write Ybeg po si tion – *De fault value upon re set is 0 – Ad vance to Yend

4rh Write Yend po si tion – *De fault value upon re set is 191 – Ad vance to Xbeg

Reads do not ad vance the clip po si tion – Use NextREG 28 (1Ch):D2 through D3 to read
the po si tion. If need be write to NextREG 28 (1Ch):D1 to re set the clip in dex and then do
con sec u tive writes and reads to get to the value you're search ing for. When the clip win -
dow is en abled for sprites in over bor der mode, the X co or di nates are in ter nally dou bled
and the clip win dow or i gin is moved to the sprite or i gin inside the border.

NextREG 26 (1Ah) – Layer 0 Clip Window Definition

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Coordinate (Xbeg,Xend,Ybeg,Yend) n n l l l l l l l l 8-bit value Xbeg,Xend,Ybeg,Yend coordinate1 *

1 Pos si ble val ues 0 to 255 or 0 to 191 de pend ing on the co or di nate be ing written
1st Write Xbeg po si tion – *De fault value upon re set is 0 – Ad vance to Xend

2nd Write Xend po si tion – *De fault value upon re set is 255 – Ad vance to Ybeg

3rd Write Ybeg po si tion – *De fault value upon re set is 0 – Ad vance to Yend

4rh Write Yend po si tion – *De fault value upon re set is 191 – Ad vance to Xbeg

Reads do not ad vance the clip po si tion – Use NextREG 28 (1Ch):D4 through D5 to read
the po si tion. If need be write to NextREG 28 (1Ch):D2 to re set the clip in dex and then do
con sec u tive writes and reads to get to the value you're search ing for
WARNING: LoRes may get a sep a rate clip win dow in a fu ture up grade

NextREG 27 (1Bh) – Layer 3 Clip Window Definition

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Coordinate (Xbeg,Xend,Ybeg,Yend) n n l l l l l l l l 8-bit value Xbeg,Xend,Ybeg,Yend coordinate1 *

1 Pos si ble val ues 0 to 159 or 0 to 255 de pend ing on the co or di nate be ing writ ten
1st Write Xbeg po si tion – *De fault value upon re set is 0 – Ad vance to Xend

2nd Write Xend po si tion – *De fault value upon re set is 159 – Ad vance to Ybeg

3rd Write Ybeg po si tion – *De fault value upon re set is 0 – Ad vance to Yend

4rh Write Yend po si tion – *De fault value upon re set is 255 – Ad vance to Xbeg

Reads do not ad vance the clip po si tion – Use NextREG 28 (1Ch):D6 through D7 to read
the po si tion. If need be write to NextREG 28 (1Ch):D3 to re set the clip in dex and then do
con sec u tive writes and reads to get to the value you're search ing for.
The X co or di nates are in ter nally dou bled

NextREG 28 (1Ch) – Clip Windows Control*

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Layer 2 Clip Index n l l Layer 2 Clip Index (0 – 3)

Sprites Layer Clip Index n l l Sprites Clip Index (0 – 3)

Layer 0 / Layer 1 Clip Index n l l Layer 0 / Layer 1 Clip Index (0 – 3)

Layer 3 Clip Index n l l Layer 3 Clip Index (0 – 3)

Reserved n 0 0 0 0 Reserved, must be 0

Layer 2 Clip Index Reset enable n l 1 to Reset the Layer 2 Clip Index

Sprites Clip Index Reset enable n l 1 to Reset the Sprites Clip Index

Layer 0 Clip Index Reset enable n l 1 to Reset the Layer 0 /Layer 1 Clip Index

Layer 3 Clip Index Reset enable n l 1 to Reset the Layer 3 Clip Index

* This NextREG may change in the fu ture

NextREG 30 (1Eh) – Active Video Line (MSB)

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Active Video Line (MSB) n l 1 for lines above 255 else 0

Reserved n 0 0 0 0 0 0 0 Reserved, must be 0

NextREG 31 (1Fh) – Active Video Line (LSB)

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Active Video Line (LSB) n l l l l l l l l Active Video Line (LSB)

NextREG 34 (22h) – Line Interrupt Control

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Line Interrupt Value MSB n n l MSB of line number 0

Line Interrupt Control n n l Enable Line Interrupt 0

ULA Interrupt Control n n l Disable ULA Interrupt 0

Reserved
n 0 0 0 0 0 Reserved, must be 0

n 0 0 0 0 Reserved, must be 0

ULA Interrupt Status Flag n l ULA asserting interrupt

ULA In ter rupt Sta tus Flag will in di cate if the ULA is as sert ing an in ter rupt even if the ULA in -
ter rupts are disabled.

NextREG 35 (23h) – Line Interrupt Value LSB

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Line Interrupt Value LSB n n l l l l l l l l Lower 8-bits of line number 0

NextREG 38 (26h) – ULA Horizontal Scroll Control

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

X Offset n n l l l l l l l l 8-bit value of X Offset (0-255) 0

This set ting re fers to all ULA modes ex cept Layer 1,0 – LoRes
NextREG 104 (68h):D2 adds a half pixel to the scroll

NextREG 39 (27h) – ULA Vertical Scroll Control

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Y Offset n n l l l l l l l l 8-bit value of Y Offset (0-191) 0

This set ting re fers to all ULA modes ex cept Layer 1,0 – LoRes

NextREG 40 (28h) – Stored Palette Value and PS/2 Keymap Address MSB

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Stored Palette value n l l l l l l l l See NextREG 68 (44h)

PS/2 Keymap Address MSB n l PS/2 Keymap Address MSB 0

Reserved n 0 0 0 0 0 0 0 Reserved, must be 0

NextREG 41 (29h) – PS/2 Keymap Address LSB

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

PS/2 Keymap Address LSB n l l l l l l l l 8-bit value (0-255) 0

NextREG 42 (2Ah) – PS/2 Keymap Data MSB

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

PS/2 Keymap Data MSB n l PS/2 Keymap Data MSB

Reserved n 0 0 0 0 0 0 0 Reserved, must be 0

NextREG 43 (2Bh) – PS/2 Keymap Data LSB

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

PS/2 Keymap Data LSB n l l l l l l l l 8-bit value (0-255)

A write causes the data to be writ ten and auto-in cre ments the Keymap Ad dress

NextREG 44 (2Ch) – DAC B Mirror (Left) / I2S Left Sample MSB

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

I2S Left Sample MSB n l l l l l l l l 8-bit value (0-255)

8-bit sample Left DAC B n l l l l l l l l 8-bit value *

* A soft re set sets a value of 128 (80h)
The I2S Left Sam ple LSB is latched and can be read from NextREG 45 (2Dh) later

NextREG 45 (2Dh) – DAC A+D Mirror (mono) / I2S Sample LSB

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

I2S Last Sample LSB n l l l l l l l l 8-bit value (0-255)

8-bit sample DACs A + D n l l l l l l l l 8-bit value *

* A soft re set sets a value of 128 (80h)
Re turns the LSB of last sam ple read from NextREG 44(2Ch) or NextREG 46(2Eh)

NextREG 46 (2Eh) – DAC C Mirror (Right) / I2S Right Sample MSB

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

I2S Right Sample MSB n l l l l l l l l 8-bit value (0-255)

8-bit sample Right DAC C n l l l l l l l l 8-bit value *

* A soft re set sets a value of 128 (80h)
The I2S Right Sam ple LSB is latched and can be read from NextREG 45 (2Dh) later

NextREG 47 (2Fh) – Layer 3 Horizontal Scroll Control MSB

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Layer 3 X Scroll Offset MSB n n l l Layer 3 X Scroll Offset MSB 0

Reserved n 0 0 0 0 0 0 Reserved, must be 0

Mean ing ful range: 0 to 319 in 40 tiles mode, 0 to 639 in 80 tiles mode

NextREG 48 (30h) – Layer 3 Horizontal Scroll Control LSB

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

X Offset LSB n n l l l l l l l l 8-bit value (0-255) 0

Mean ing ful range: 0 to 319 in 40 tiles mode, 0 to 639 in 80 tiles mode

NextREG 49 (31h) – Layer 3 Vertical Scroll Control

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Y Offset n n l l l l l l l l 8-bit value (0-255) 0

NextREG 50 (32h) – Layer 1,0 (LoRes) Horizontal Scroll Control

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

X Offset n n l l l l l l l l 8-bit value of X Offset (0-255) 0

Layer 1,0 (LoRes) scrolls in half-pix els at the same res o lu tion and smooth ness as Layer 2

NextREG 51 (33h) – Layer 1,0 (LoRES) Vertical Scroll Control

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Y Offset n n l l l l l l l l 8-bit value of Y Offset (0-191) 0

Layer 1,0 (LoRes) scrolls in half-pix els at the same res o lu tion and smooth ness as Layer 2

NextREG 52 (34h) – Sprite Number

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

When NR09:D4 is set n n
l l l l l l l Sprite number1 / Pattern Number2

l Pattern Offset Address Offset3

The above applies only when the sprites port is in Lockstep and effectively performs an OUT to port 12347
(303Bh) with the same value otherwise the section below applies

When NR09:D4 is NOT set n n 0 l l l l l l l Sprite number1

1 Val ues are 0 to 127
2 Val ues are 0 to 63
3 Adds 128 to pat tern ad dress

This reg is ter se lects which sprite has its at trib utes con nected to the reg is ters that fol low:
NextREG 53 (36h) – NextREG 57 (39h) and their auto-in cre mented coun ter parts
NextREG 117 (75h) – NextREG 121 (79h)

NextREG 53 (35h) – Sprite Attribute 0

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

X Coordinate LSB n l l l l l l l l Sprite X Coordinate LSB

MSB is in NextREG 55 (37h): D0

NextREG 54 (36h) – Sprite Attribute 1

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Y Coordinate LSB n l l l l l l l l Sprite Y Coordinate LSB

MSB is in NextREG 57 (39h)'s D0

NextREG 55 (37h) – Sprite Attribute 2

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Sprite Attribute 2 n e e e e d c b a See notes

a For rel a tive sprites: In di cates that e is rel a tive to the an chor's pal ette off set
For nor mal sprites: Sprite's X Co or di nate MSB (See NextREG 53 (35h) for LSB)

b 90o Clock wise Ro ta tion Con trol (0 = No, 1 = Yes)
c Ver ti cal Mir ror Con trol (0 = No, 1 = Yes)
d Hor i zon tal Mir ror Con trol (0 = No, 1 = Yes)
e 4-bit pal ette off set

Ro ta tion is ap plied be fore mir ror ing.

NextREG 56 (38h) – Sprite Attribute 3

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Sprite Attribute 3 n c b a a a a a a See notes

a Sprite pat tern to use. Pos si ble val ues = 0 to 63
b At trib ute 4 switch (0 = No, 1 = Yes)

If b = 0 then the sprite is fully de scribed by At trib utes 0 to 3. The sprite pat tern is an 8-bit
one iden ti fied by pat tern a and is an an chor and can not be made rel a tive. Sprite dis play
be haves as if At trib ute 4 = 0
If b = 1 then the sprite is fur ther de scribed by At trib ute 4 that fol lows in NextREG 57 (39h)

c Vis i bil ity Con trol (0 = In vis i ble, 1 = Vis i ble)

NextREG 57 (39h) – Sprite Attribute 4

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Sprite Attribute 4 n f e d c c b b a See notes

a For rel a tive sprites: In di cates that the sprite pat tern num ber is rel a tive to the an chor's
For nor mal sprites: Sprite's Y Co or di nate MSB (See NextREG 54 (36h) for LSB)

b For nor mal and rel a tive, com pos ite type sprites in di cates X di rec tion Mag ni fi ca tion:
(00 = 1x, 01 = 2x, 10 = 4x, 11 = 8x)
For rel a tive, uni fied type sprites it's 0

c For nor mal and rel a tive, com pos ite type sprites in di cates Y di rec tion Mag ni fi ca tion:
(00 = 1x, 01 = 2x, 10 = 4x, 11 = 8x)
For rel a tive, uni fied type sprites it's 0

d For nor mal sprites, in di cates that the at tached rel a tive sprites are: 0 for Com pos ite, 1 for
Uni fied
For rel a tive sprites con tains the 7th pat tern bit if the sprite pat tern is 4-bit.

e For nor mal sprites con tains the 7th pat tern bit if the sprite pat tern is 4-bit.
For rel a tive sprites it's 1.

f 4-bit pat tern switch: 1 if the sprite pat tern is 4-bit oth er wise 0
{f,e} must not equal {0,1} as this com bi na tion is used to in di cate a rel a tive sprite. See
notes above.

NextREG 64 (40h) – Pallete Index Select

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Palette Index Select n n l l l l l l l l Palette index number

Se lects the pal ette in dex to change the as so ci ated col our
For ULA only, INKs are mapped to in di ces 0 through 7, BRIGHT INKs to in di ces 8 through
15, PAPERs to in di ces 16 through 23 and BRIGHT PAPERs to in di ces 24 through 31.
In EnhancedULA mode, INKs come from a sub set of in di ces from 0 through 127 and
PAPERs from a sub set of in di ces from 128 through 255.
The num ber of ac tive in di ces de pends on the num ber of at trib ute bits as signed to INK and
PAPER out of the at trib ute byte.
In ULAplus mode, the last 64 en tries (in di ces 192 to 255) hold the ULAplus pal ette.
The ULA al ways takes bor der col our from PAPER for stan dard ULA and En hanced ULA.

NextREG 65 (41h) – 8-bit Pallete Data

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

8-bit Palette Entry n n l l l l l l l l Colour entry in RRRGGGBB format

The lower blue bit of the 9-bit in ter nal col our will be the log i cal OR of Bits 0 and 1 of the
8-bit en try. Af ter each write, the pal ette in dex is auto-in cre mented to the next in dex if the
auto-in cre ment has been en abled in NextREG 67 (43h):D7.
Reads do not auto-in cre ment the in dex. Any other bits as so ci ated with the in dex will be ze -
roed

268 ZX Spectrum Next – User Manual

Chapter 23 – IN, OUT and the Next Registers The Next Registers

ZX Spectrum Next – User Manual 269

The Next Registers Chapter 23 – IN, OUT and the Next Registers

NextREG 66 (42h) – EnhancedULA Attribute Byte Format

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Attribute Byte Format n n l l l l l l l l Attrbute byte's INK representation mask *

* Soft re set de faults to 7
Not set bits, in di cate PAPER. Ac cept able val ues are made by set ting each bit from 0 on, in
se quence: (1,3,7,15,31,63,127 and 255) which ef fec tively splits the at trib ute byte set ting
the INKs from the right side and the PAPERs from what's left. INKs are mapped from In dex
0 on wards on the pal ette while PAPERs and BORDER are mapped from In dex 128 on -
wards.
Mask ex am ples:
00011111 will set a max i mum of 64 INKs and 8 PAPERs.
01111111 will set a max i mum of 127 INKs and 2 PAPERs.
A full value of 255 will set all colours to INK (Full INK mode) and PAPER and BORDER are
taken from the fallback col our de fined in NextREG 74 (4Ah)
If the mask is not one of those listed above, the INK is still the re sult of log i cally ANDing
the mask with the at trib ute byte but the PAPER and BORDER will be taken from the
fallback col our.
Ex am ple:
00111011 will be ANDed with the at trib ute byte to form the INK in dex and PAPER will
come from the fallback col our.

NextREG 67 (43h) – Palette Control

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

EnhancedULA control n n l Enable EnhancedULA 0

Active ULA1 Palette n n
0 First Palette

0
1 Second Palette

Active Layer 2 Palette n n
0 First Palette

0
1 Second Palette

Active Sprites Palette n n
0 First Palette

0
1 Second Palette

Palette Select for Read/Write n n

0 0 0 ULA First

*

1 0 0 ULA Second

0 0 1 Layer 2 First

1 0 1 Layer 2 Second

0 1 0 Sprites First

1 1 0 Sprites Second

0 1 1 Layer 3 First

1 1 1 Layer 3 Second

Palette Auto-increment Control n n l Disable Palette Write Auto-increment 0

* Af ter a soft re set de faults to 000
1 ULA re fers to all ULA modes (Lay ers 0 and 1)

NextREG 68 (44h) – 9-bit Palette Data

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

MSB Colour (1st Write) Non L2 n l l l l l l l l MSB (RRRGGGBB) format – non L2 palette

LSB Blue (2nd Write) Non L2 n n l LSB B format – non L2 palette

Reserved Non L2 n 0 0 0 0 0 0 0 Reserved, must be 0 – non L2 palette

MSB Colour (1st Write) L2 n l l l l l l l l MSB (RRRGGGBB) format – L2 palette

LSB Blue + Priority L2 (2nd W) n n l l L2 priority (D7) and LSB B(D0) – L2palette

Reserved L2 n 0 0 0 0 0 0 Reserved, must be 0 L2 palette

9-bit Pal ette Data is en tered in two con sec u tive writes; the sec ond write auto-in cre ments
the pal ette in dex if auto-in cre ment is en abled in NextREG 67 (43h):D7
If writ ing an L2 pal ette, the sec ond write's D7 holds the L2 pri or ity bit which if set (1) brings
the col our de fined at that in dex on top of all other lay ers. If you also need the same col our
in reg u lar pri or ity (for ex am ple: for en vi ron men tal mask ing) you will have to set it up again,
this time with no priority.
Reads re turn the sec ond byte and do not auto-in cre ment.

NextREG 74 (4Ah) – Fallback Colour Value

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Fallback Colour n n l l l l l l l l 8-bit colour if all layers are transparent *

* Soft re set sets the de fault fallback to 227 (E3h) as it must be the same for when
ULAplus pro grams hit the trans par ent col our, oth er wise noth ing will be dis played.

NextREG 75 (4Bh) – Sprite Transparency Index

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Transparency Index n n l l l l l l l l Sprite colour index treated as transparent *

* Soft re set de faults to 227 (E3h)
For 4-bit sprites, only 4-bits are used (from D0 to D3).
For ex am ple for 8-bit trans par ency in dex 227 (E3h) the 4-bit equiv a lent will be 3 (3h)

NextREG 76 (4Ch) – Layer 3 Transparency Index

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Transparency Index n n l l l l 4-bit index treated as transparent *

Reserved n n 0 0 0 0 Reserved, must be 0 0

* Soft re set de faults to 15 (Fh)

NextREG 80 (50h) – MMU Slot 0 Control

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

MMU Slot 0 control n n l l l l l l l l 8K RAM page for address 0000h–1FFFh *

* De fault 255 (FFh)
Pages range from 0 to 223 on a fully ex panded Next. A value of 255 (FFh) makes the ROM
be come vis i ble

NextREG 81 (51h) – MMU Slot 1 Control

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

MMU Slot 1 Control n n l l l l l l l l 8K RAM page for address 2000h–3FFFh *

* De fault 255 (FFh)
Pages range from 0 to 223 on a fully ex panded Next. A value of 255 (FFh) makes the ROM
be come vis i ble

NextREG 82 (52h) – MMU Slot 2 Control

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

MMU Slot 2 Control n n l l l l l l l l 8K RAM page for address 4000h–5FFFh *

* De fault 10 (0Ah)
Pages range from 0 to 223 on a fully ex panded Next.

NextREG 83 (53h) – MMU Slot 3 Control

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

MMU Slot 3 Control n n l l l l l l l l 8K RAM page for address 6000h–7FFFh *

* De fault 11 (0Bh)
Pages range from 0 to 223 on a fully ex panded Next.

NextREG 84 (54h) – MMU Slot 4 Control

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

MMU Slot 4 Control n n l l l l l l l l 8K RAM page for address 8000h–9FFFh *

* De fault 4 (04h)
Pages range from 0 to 223 on a fully ex panded Next.

NextREG 85 (55h) – MMU Slot 5 Control

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

MMU Slot 5 Control n n l l l l l l l l 8K RAM page for address A000h–BFFFh *

* De fault 5 (05h)
Pages range from 0 to 223 on a fully ex panded Next.

NextREG 86 (56h) – MMU Slot 6 Control

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

MMU Slot 6 Control n n l l l l l l l l 8K RAM page for address C000h–DFFFh *

* De fault 0 (00h)
Pages range from 0 to 223 on a fully ex panded Next.

NextREG 87 (57h) – MMU Slot 7 Control

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

MMU Slot 7 Control n n l l l l l l l l 8K RAM page for address E000h–FFFFh *

* De fault 1 (01h)
Pages range from 0 to 223 on a fully ex panded Next.

NextREG 96 (60h) – Copper Data 8-bit Write

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Copper Instruction 8-bit n l l l l l l l l Byte to write to copper instruction memory

Each Cop per In struc tion is two-bytes long. Af ter a write, the Cop per ad dress is auto-in cre -
mented to the next mem ory po si tion.

NextREG 97 (61h) – Copper Address LSB

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Copper memory address LSB n n l l l l l l l l Copper instruction memory address (LSB) 0

Cop per mem ory ad dresses range over 0 through 2047 (7FFh)

NextREG 98 (62h) – Copper Control

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Copper Memory Address MSB n n l l l Copper Instruction Memory Address (MSB) 0

Copper Start Control n n

0 0 Copper fully stopped

*
0 1 Copper start, exec. list from idx0, loop to st

1 0 Copper start, exec. list from last, loop to st.

1 1 Copper start, exec. list from idx0, rst at 0,0

* Soft re set de faults to 000
Cop per mem ory ad dresses range from 0 through 2047 (7FFh)
Note: Writ ing the same cop per start con trol value does not re set the cop per

NextREG 99 (63h) – Copper Data 16-bit write

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Copper data n l l l l l l l l 1st write MSB, 2nd write LSB 0

The 16-bit value is writ ten in pairs. The first 8-bits are the MSB and are des tined for an
even cop per in struc tion ad dress. The sec ond 8-bits are the LSB and are des tined for an
odd cop per in struc tion address.
Af ter each write, the cop per ad dress is auto-in cre mented to the next mem ory po si tion.
Af ter a write to an odd ad dress, the en tire 16-bits is writ ten to cop per mem ory at once

NextREG 104 (68h) – ULA Control

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Stencil Mode control n n l Enable Stencil Mode1 0

Reserved n 0 Reserved, must be 0 0

ULA Half Pixel Scroll n n l ULA Half Pixel Scroll enabled2 0

ULAplus Control n n l ULAplus Enabled 0

Reserved n 0 0 Reserved, must be 0 0

Layer 0 + 3 Colour Blending
Control for S(L+U) 6 & 7

n n
0 Layer 0 Colour

0
1 Layer 0 +3 mix

Output Control n n l Disable ULA output 0

1 When both ULA and Layer 3 are en abled, if ei ther are trans par ent, the re sult is trans par ent
oth er wise the re sult is a log i cal AND of both colours

2 Set ting may change

NextREG 105 (69h) – Display Control 1

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Port 255 (FFh) “Timex” alias n n l l l l l l Port 255 (FFh) alias

Port 32765 (7FFDh):D3 alias n n l ULA Shadow Display Enable

Port 4667 (123Bh):D1 alias n n l Layer 2 Enable

NextREG 106 (6Ah) – Layer 1,0 (LoRes) Control

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Radastan | ULAplus palette
Offset

n n
l l l l Radastan Palette Offset 0

l l ULAplus Palette Offset 0

Radastan / Timex interaction n n l Radastan – Timex DFILE switch1 0

Radastan Memory Area Control n n l Radastan Mode Enable 0

Reserved n n 0 0 Reserved, must be 0

1 When us ing Radastan mode, only half the space is used as op posed to Layer 1,0 thus
only one DFILE is oc cu pied –at ei ther 16384 (4000h) or 24576 (6000h). Which lo ca tion is
used is de ter mined by port 255 (FFh), where one can choose be tween DISP_FILE1 or
DISP_FILE2 at the afore men tioned ad dresses. If set, this bit in verts the lo ca tion so it can
switch be tween the two al low ing Radastan mode to co-ex ist with a nor mal Layer 0 screen.

NextREG 107 (6Bh) – Layer 3 Control

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Layer 3 Priority n n l Layer 3 on top of ULA Enable 0

512 Tile mode Control n n l Activate 512 Tile mode1 0

Reserved n n 0 Reserved, must be 0 0

Text mode Control n n l Text mode Enable 0

Layer 3 palette Select n n
0 Palette 0

0
1 Palette 1

Attribute Entry Control n n l Attribute entry Disable2 0

Layer 3 Size Control n n
0 40 x 32

0
1 80 x 32

Layer 3 Control n n l Layer 3 Enable 0

1 If this bit is set, NextREG 108 (6Ch):D0 changes mean ing
2 If this bit is set then the Layer 3 tilemap en tries are only a sin gle byte Tile ID and the at trib -

ute byte co mes from NextREG 108 (6Ch) in stead.

NextREG 108 (6Ch) – Default Layer 3 Attribute*

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

If 512 Tile mode is disabled n n l ULA over Layer 3
0

If 512 Tile mode is enabled n n l Bit 8 of the tile number

Rotate 90o Control n n l Rotate 0

Y Mirror Control n n l Y Mirror 0

X Mirror Control n n l X Mirror 0

Palette Offset n n l l l l Palette Offset 0

* Ac tive if NextREG 107 (6Bh):D5 is set to 1

NextREG 110 (6Eh) – Layer 3 Tilemap Base Address

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

MSB of Layer 3 Tilemap base
address in Bank 5

n n l l l l l l Offset into bank 5 – Entered together with
*

n l l bits 6 and 7

n 0 0 Read always as 0

* Soft Re set de fault 44 (2Ch) – This is be cause the ad dress is 27648 (6C00h) so the MSB is
6Ch. But the stored value is only the lower 6 bits so it's an off set into the 16K Bank 5. To
cal cu late there fore sub tract 40h leav ing you with 2Ch.
The value writ ten is an off set into the 16K Bank 5 al low ing the tilemap to be placed at any
mul ti ple of 256 bytes.
Writ ing a phys i cal MSB ad dress in 64 (40h) – 127 (7Fh) or 192 (C0h) – 255 (FFh) range is
per mit ted.
The value read back should be treated as hav ing a fully sig nif i cant 8-bit value.

NextREG 111 (6Fh) – Layer 3 Tile definitions Base Address

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

MSB of Layer 3 Tile definitions
base address in Bank 5

n n l l l l l l Offset into bank 5 – Entered together with
*

n l l bits 6 and 7

n 0 0 Reads always as 0

* Soft Re set de fault 12 (0Ch) – As MSB of the larger ad dress that's re ally 19456 (4C00h) so
see the pre vi ous en try for the method of cal cu la tion.
The value writ ten is an off set into the 16K Bank 5 al low ing tile def i ni tions to be placed at
any mul ti ple of 256 bytes.
Writ ing a phys i cal MSB ad dress in 64 (40h) – 127 (7Fh) or 192 (C0h) – 255 (FFh) range is
per mit ted..
The value read back should be treated as hav ing a fully sig nif i cant 8-bit value.

NextREG 117 (75h) – Sprite Attribute 0 (Auto-incrementing)

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

X Coordinate LSB n l l l l l l l l Sprite X Coordinate LSB

MSB is in NextREG 55 (37h)'s D0

NextREG 118 (76h) – Sprite Attribute 1 (Auto-incrementing)

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Y Coordinate LSB n l l l l l l l l Sprite Y Coordinate LSB

MSB is in NextREG 57 (39h)'s D0

NextREG 119 (77h) – Sprite Attribute 2 (Auto-incrementing)

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Sprite Attribute 2 n e e e e d c b a See notes

a For rel a tive sprites: In di cates that e is rel a tive to the an chor's pal ette off set
For nor mal sprites: Sprite's X Co or di nate MSB (See NextREG 53 (35h) for LSB)

b 90o Clock wise Ro ta tion Con trol (0 = No, 1 = Yes)
c Ver ti cal Mir ror Con trol (0 = No, 1 = Yes)
d Hor i zon tal Mir ror Con trol (0 = No, 1 = Yes)
e 4-bit pal ette off set

Ro ta tion is ap plied be fore mir ror ing.

NextREG 120 (78h) – Sprite Attribute 3 (Auto-incrementing)

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Sprite Attribute 3 n c b a a a a a a See notes

a Sprite pat tern to use. Pos si ble val ues = 0 to 63
b At trib ute 4 switch (0 = No, 1 = Yes)

If b = 0 then the sprite is fully de scribed by At trib utes 0 to 3. The sprite pat tern is an 8-bit
one iden ti fied by pat tern a and is an an chor and can not be made rel a tive. Sprite dis play
be haves as if At trib ute 4 = 0
If b = 1 then the sprite is fur ther de scribed by At trib ute 4 that fol lows in NextREG 57 (39h)

c Vis i bil ity Con trol (0 = In vis i ble, 1 = Vis i ble)

NextREG 121 (79h) – Sprite Attribute 4 (Auto-incrementing)

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Sprite Attribute 4 n f e d c c b b a See notes

a For rel a tive sprites: In di cates that the sprite pat tern num ber is rel a tive to the an chor's
For nor mal sprites: Sprite's Y Co or di nate MSB (See NextREG 54 (36h) for LSB)

b For nor mal and rel a tive, com pos ite type sprites in di cates X di rec tion Mag ni fi ca tion:
(00 = 1x, 01 = 2x, 10 = 4x, 11 = 8x)
For rel a tive, uni fied type sprites it's 0

c For nor mal and rel a tive, com pos ite type sprites in di cates Y di rec tion Mag ni fi ca tion:
(00 = 1x, 01 = 2x, 10 = 4x, 11 = 8x)
For rel a tive, uni fied type sprites it's 0

d Rel a tive Type Sprite in di ca tor: 0 for Com pos ite, 1 for Uni fied
For rel a tive sprites con tains the 7th pat tern bit if the sprite pat tern is 4-bit.

e For nor mal sprites con tains the 7th pat tern bit if the sprite pat tern is 4-bit.
For rel a tive sprites it's 1.

f 4-bit pat tern switch: 1 if the sprite pat tern is 4-bit oth er wise 0
{f,e} must not equal {0,1} as this com bi na tion is used to in di cate a rel a tive sprite. See
notes above.

NextREG 127 (7Fh) – User Register 0

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

User Register n n l l l l l l l l User Register *

* Soft re set de faults to 255 (FFh)

CAUTION: NextREG numbers above 127 (7Fh) are inaccessible to the Copper

NextREG 128 (80h) – Expansion Bus Enable

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

AFTER SOFT RESET (Copied into bits D4 through D7)

Memory Cycles and ROMCS n n l Memory cycles Disable/ Ignore ROMCS n 0

I/O Cycles and IORQULA n n l I/O cycles Disable / Ignore IORQULA n 0

Expansion bus Enable n n l Expansion bus Enable n 0

IMMEDIATE

Memory Cycles and ROMCS n n l Memory cycles Disable/ Ignore ROMCS n 0

I/O Cycles and IORQULA n n l I/O cycles Disable / Ignore IORQULA n 0

Expansion bus Enable n n l Expansion bus Enable n 0

NextREG 129 (81h) – Expansion Bus Control

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

MAX CPU Speed when
Expansion Bus is enabled1

n n

0 0 3.5 MHz

n *
0 1 7 MHz

1 0 14 MHz

1 1 28 MHz

Propagate MAX CPU Clock ena. n l Propagate MAX CPU Clock at all times2 n 0

Exp. bus ROMCS state flag n l ROMCS asserted on Expansion Bus

* Hard re set de faults to 00
1 Cur rently fixed at 00
2 Ap plies even when the Ex pan sion Bus is dis abled

NextREG 130 (82h) – Internal Port Decoding Control 1/4

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Enable Timex n n l Port FFh 1

Enable Paging n n l Port 7FFDh 1

Enable Next Memory Paging n n l Port DFFDh 1

Enable +3 Paging n n l Port 1FFDh 1

Enable +3 Floating Bus n n l +3 Floating bus 1

Enable DMA n n l Port 6Bh (DMA) 1

Enable Kempston Port 1 n n l Port 1Fh (Kempston / MD 1) 1

Enable Kempston Port 2 n n l Port 37h (Kempston / MD 2) 1

NextREG 131 (83h) – Internal Port Decoding Control 2/4

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Enable divMMC n n l Port E3h (divMMC Control) 1

Enable Multiface n n l Multiface (two variable ports) 1

Enable I2C n n l Ports 103Bh, 113Bh (I2C) 1

Enable SPI n n l Ports E7h, EBh (SPI) 1

Enable UART n n l Ports 133Bh, 143Bh, 153Bh (UART) 1

Enable Kempston Mouse n n l Ports FADFh,FBDFh,FFDFh mouse 1

Enable Sprites n n l Ports 57h,5Bh,303Bh (Sprites) 1

Enable Layer 2 n n l Port 123Bh (Layer2) 1

NextREG 132 (84h) – Internal Port Decoding Control 3/4

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Enable AY n n l Ports FFFDh, BFFDh (AY) 1

Enable Soundrive DAC Mode 1 n n l Ports 0Fh,1Fh, 4Fh, 5Fh (DAC SD1) 1

Enable Soundrive DAC Mode 2 n n l Ports F1h, F3h, F9h ,FBh (DAC SD2) 1

Enable Profi/Covox Stereo DAC n n l Ports 3Fh, 5Fh (DAC stereo-Profi/Covox) 1

Enable Covox Stereo DAC n n l Ports 0Fh, 4Fh (DAC stereo-Covox) 1

Enable Pentagon/ATM DAC n n l Port FBh (DAC mono-Penta.) (SD2 off) 1

Enable Covox/GS Mono DAC n n l Port B3h (DAC mono-GS/Covox) 1

Enable SPECdrum Mono DAC n n l Port DFh (DAC mono-SPECdrum) 1

270 ZX Spectrum Next – User Manual

Chapter 23 – IN, OUT and the Next Registers The Next Registers

ZX Spectrum Next – User Manual 271

The Next Registers Chapter 23 – IN, OUT and the Next Registers
NextREG 133 (85h) – Internal Port Decoding Control 4/4 (MSB)

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Enable ULAplus n n l Ports BF3Bh, FF3Bh (ULAplus) – MSB 1

NextREG 134 (86h) – Expansion Bus Port Decoding Control 1/4

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Enable Timex l Port FFh n 1

Enable Paging l Port 7FFDh n 1

Enable Next Memory Paging l Port DFFDh n 1

Enable +3 Paging l Port 1FFDh n 1

Enable +3 Floating Bus l +3 Floating bus n 1

Enable DMA l Port 6Bh (DMA) n 1

Enable Kempston Port 1 l Port 1Fh (Kempston / MD 1) n 1

Enable Kempston Port 2 l Port 37h (Kempston / MD 2) n 1

NextREG 135 (87h) – Expansion Bus Port Decoding Control 2/4

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Enable divMMC n n l Port E3h (divMMC Control) n 1

Enable Multiface n n l Multiface (two variable ports) n 1

Enable I2C n n l Ports 103Bh, 113Bh (I2C) n 1

Enable SPI n n l Ports E7h, EBh (SPI) n 1

Enable UART n n l Ports 133Bh, 143Bh, 153Bh (UART) n 1

Enable Kempston Mouse n n l Ports FADFh,FBDFh,FFDFh mouse n 1

Enable Sprites n n l Ports 57h,5Bh,303Bh (Sprites) n 1

Enable Layer 2 n n l Port 123Bh (Layer2) n 1

NextREG 136 (88h) – Expansion Bus Port Decoding Control 3/4

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Enable AY n n l Ports FFFDh, BFFDh (AY) n 1

Enable DAC Mode 1 n n l Ports 0Fh,1Fh, 4Fh, 5Fh (DAC mode 1) n 1

Enable DAC Mode 2 n n l Ports F1h, F3h, F9h ,FBh (DAC mode 2) n 1

Enable Profi/Covox Stereo DAC n n l Ports 3Fh, 5Fh (DAC stereo-Profi/Covox) n 1

Enable Covox Stereo DAC n n l Ports 0Fh, 4Fh (DAC stereo-Covox) n 1

Enable Pentagon/ATM DAC n n l Port FBh (DAC mono Pentagon) (SD2 off) n 1

Enable Covox/GS Mono DAC n n l Port B3h (DAC mono GS/Covox) n 1

Enable SPECdrum Mono DAC n n l Port DFh (DAC mono SPECdrum) n 1

NextREG 137 (89h) – Expansion Bus Port Decoding Control 4/4 (MSB)

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Enable ULAplus n n l Ports BF3Bh, FF3Bh (ULAplus) n 1

The Internal Port Decoding Enables always apply.
When the Expansion Bus is enabled, the Expansion Bus Port Decoding Enables
are logically ANDed with the Internal Enables. A result of 0 for the corresponding
bit indicates the internal device is disabled. If the Expansion Bus is enabled, this
allows I/O cycles for disabled ports to propagate to the Expansion Bus, otherwise
corresponding I/O cycles to the Expansion Bus are filtered.

NextREG 138 (8Ah) – Expansion Bus I/O Propagate Control

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Port FEh l Propagate port FEh I/O Cycles n 1

Port 7FFDh l Propagate port 7FFDh I/O Cycles n 0

Port DFFDh l Propagate port DFFDh I/O Cycles n 0

Port 1FFDh l Propagate port 1FFDh I/O Cycles n 0

Reserved 0 0 0 0 Reserved, must be 0

If any of the bits are set, I/O cy cles for the cor re spond ing ports are prop a gated to the Ex -
pan sion Bus when the Ex pan sion Bus is en abled. If the in ter nal port de code is still ac tive,
any re sponse sent by de vices on the Ex pan sion Bus will be ignored.
This al lows ex ter nal pe riph er als to mon i tor changes in state in side the ZX Spec trum Next.
Port FEh is treated spe cially, so that ex ter nal key boards can be at tached. When its prop a -
gate bit is set, the value read from the bus will be mixed into key board reads on port FEh.

NextREG 140 (8Ch) – Alternate ROM

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

AFTER SOFT RESET (Copied into bits D4 through D7)

ROM 0 (128K) Lock Enable n n l ROM 0 Lock Enable n 0

ROM 1 (48K) Lock Enable n n l ROM 1 Lock Enable n 0

ALT ROM Availability Switch n n l ALT ROM visible ONLY during writes n 0

ALT ROM Enable n n l ALT ROM Enable n 0

IMMEDIATE

ROM 0 (128K) Lock Enable n n l ROM 0 Lock Enable n 0

ROM 1 (48K) Lock Enable n n l ROM 1 Lock Enable n 0

ALT ROM Availability Switch n n l ALT ROM visible ONLY during writes n 0

ALT ROM Enable n n l ALT ROM Enable n 0

NextREG 144 (90h) – PI GPIO Pin Output Enable 1/4

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Pin 0 n l Pin 0 cannot be enabled 0

Pin 1 n l Pin 1 cannot be enabled 0

Pin 2 n n l Enable 0

Pin 3 n n l Enable 0

Pin 4 n n l Enable 0

Pin 5 n n l Enable 0

Pin 6 n n l Enable 0

Pin 7 n n l Enable 0

NextREG 145 (91h) – PI GPIO Pin Output Enable 2/4

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Pin 8 n n l Enable 0

Pin 9 n n l Enable 0

Pin 10 n n l Enable 0

Pin 11 n n l Enable 0

Pin 12 n n l Enable 0

Pin 13 n n l Enable 0

Pin 14 n n l Enable 0

Pin 15 n n l Enable 0

NextREG 146 (92h) – PI GPIO Pin Output Enable 3/4

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Pin 16 n n l Enable 0

Pin 17 n n l Enable 0

Pin 18 n n l Enable 0

Pin 19 n n l Enable 0

Pin 20 n n l Enable 0

Pin 21 n n l Enable 0

Pin 22 n n l Enable 0

Pin 23 n n l Enable 0

NextREG 147 (93h) – PI GPIO Pin Output Enable 4/4

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Pin 24 n n l Enable 0

Pin 25 n n l Enable 0

Pin 26 n n l Enable 0

Pin 27 n n l Enable 0

NextREG 152 (98h) – PI GPIO Pin State 1/4

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Pin 0 n n l Data 1

Pin 1 n n l Data 1

Pin 2 n n l Data 1

Pin 3 n n l Data 1

Pin 4 n n l Data 1

Pin 5 n n l Data 1

Pin 6 n n l Data 1

Pin 7 n n l Data 1

NextREG 153 (99h) – PI GPIO Pin State 2/4

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Pin 8 n n l Data 1

Pin 9 n n l Data 0

Pin 10 n n l Data 0

Pin 11 n n l Data 0

Pin 12 n n l Data 0

Pin 13 n n l Data 0

Pin 14 n n l Data 0

Pin 15 n n l Data 0

NextREG 154 (9Ah) – PI GPIO Pin State 3/4

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Pin 16 n n l Data 0

Pin 17 n n l Data 0

Pin 18 n n l Data 0

Pin 19 n n l Data 0

Pin 20 n n l Data 0

Pin 21 n n l Data 0

Pin 22 n n l Data 0

Pin 23 n n l Data 0

NextREG 155 (9Bh) – PI GPIO Pin State 4/4

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Pin 24 n n l Data 0

Pin 25 n n l Data 0

Pin 26 n n l Data 0

Pin 27 n n l Data 0

Writes to the above reg is ters only prop a gate to the PI GPIO when the cor re spond ing pin
has its out put en abled by NextREG 144 (90h) to 147 (93h)

NextREG 160 (h) – PI Peripheral Enable

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Enable SPI n n l Enable SPI on GPIO 7,8,9,10,11 * 0

Reserved n n 0 0 Reserved, must be 0

Enable I2C n n l Enable I2C on GPIO 2,3 * 0

PI Communication Type n n
0 Connect Rx to GPIO 15, Tx to GPIO 141,*

0
1 Connect Rx to GPIO 14, Tx to GPIO 15 2,*

Enable UART n n l Enable UART on GPIO 14,15 * 0

Reserved n n 0 0 Reserved, must be 0

* Over rides GPIO En ables
1 For com mu ni ca tion with Pi HATS
2 For com mu ni ca tion with Pi

NextREG 162 (A2h) – PI I2S Audio Control

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Redirect to EAR n n l Direct I2S audio to EAR on port 0xFE 0

Slave Mode Control n n l Slave mode (PCM_CLK, PCM_FS external) 0

Mute R control n n l Mute right side 0

Mute L control n n l Mute left side 0

Audio flow direction n n
0 PCMD_OUT to Pi, PCMD_IN from Pi (Hats)

0
1 PCMD_OUT from Pi, PCMD_IN to Pi (pi)

Reserved n 0 Reserved, must be 0

I2S state n n

0 0 I2S Disabled

*
0 1 I2S is mono, source R

1 0 I2S is mono, source L

1 1 I2S is stereo

* Soft re set sets a de fault of 00

NextREG 163 (A3h) – Pi0 I2S Clock Divide (Master Mode)

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description H D

Clock Divide n n l l l l l l l l 8-bit value (0-255) *

Clock Di vide sets sam ple rate when in mas ter mode: Clock Di vider = 538461¸
SampleRateHz – 1

* Soft re set de faults to 11

Other port addresses

As seen in the ta ble at the be gin ning of this chap ter and the dis cus sion about de cod ing,
all even ad dresses re fer to ULA func tions. You may find your self in need read the key -
board di rectly for the hard ware. As men tioned, part of the ULA's func tion is to re turn the
state of keypresses. The key board is di vided in 8 half-rows of 5 keys each, each half-row
hav ing it's own port ad dress3.

IN 65278 reads the half-row CAPS SHIFT to V
IN 65022 reads the half-row A to G
IN 64510 reads the half-row Q to T
IN 63486 reads the half-row 1 to 5
IN 61438 reads the half-row 0 to 6
IN 57342 reads the half-row P to Y
IN 49150 reads the half-row ENTER to H
IN 32766 reads the half-row SPACE to B

(These ad dresses are cal cu lated as: 254 + 256*(255 - 2n) as n goes from 0 to 7).

In the byte read in, bits D0 to D4 stand for each of the five keys in the given half row – D0 for
the out side key and D4 for the one near est the mid dle. The bit is 0 if the key is pressed and
1 if it is not. D6 on each is the value at the EAR socket.

For ex am ple to find the value of the CAPS SHIFT key, you can do:

PRINT %IN 65278 & @1

Writ ing a value us ing OUT to the ULA (Port 254 / FEh) con trols other hard ware as well. You
can drive the beeper with D4, the MIC socket with D3 and mod ify the BORDER col our us -
ing bits D0,D1 and D2. For ex am ple to make the bor der a nice ma genta col our you can:

OUT 254, %@00000011

Port ad dresses 32765 (7FFDh), 8189 (1FFDh) and 57341 (DFFDh) con trol the ex tra
mem ory. Ex e cut ing an OUT to these ports from NextBASIC with out know ing the ram i fi ca -
tions will nearly al ways cause the com puter to crash, los ing any pro gram and data. These
ports are write-only, i.e. you can not de ter mine the cur rent state of the pag ing by an IN in -
struc tion. This is why the BANKM sys tem vari able is al ways kept up to date with the last
value out put to this port. Check Chap ter 24 – The Mem ory where we ex am ine the banking
system in detail.

Writ ing to port 65533 (FFFDh) will se lect a par tic u lar PSG reg is ter (on the AY sound chip)
and writ ing to port 49149 (BFFDh) will send a par tic u lar value to that reg is ter. Reading

272 ZX Spectrum Next – User Manual

Chapter 23 – IN, OUT and the Next Registers Other port addresses

3 Extended keys are combinations of the other keys, so they need to be read by the specific port that produces it.
For example EXTEND is CAPS SHIFT + SYMBOL SHIFT etc.

ZX Spectrum Next – User Manual 273

The ZX Spectrum Next Hardware Ports List Chapter 23 – IN, OUT and the Next Registers

from port 65533 (FFFDh) re turns the value stored in the se lected reg is ter. Ju di cious use of
these two reg is ters can al low sounds to be gen er ated while NextBASIC gets on with some -
thing else.

The sec tion that fol lows de scribes all ZX Spec trum Next – spe cific hard ware ports' data
bits func tions; ad dress ing them is via OUT com mands.

The ZX Spectrum Next Hardware Ports List

NOTE

The following Hardware Ports are not listed:
254 (FEh), 3765 (7FFDh), 8189 (1FFDh), 57341 (DFFDh),

48955 (BF3B), 4667 (123Bh) and 65339 (FF3B)
as they're already documented elsewhere in this user manual or are provided as extra

compatibility features. Ports are arranged according to their function

Input / Output / Legacy Video

Port 255 (FFh) – Timex SCLD ULA Extensions*

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description

Screen Mode Select n n

0 0 0 Std: DFILE0+COLOURFILE0 @ 4000h

0 0 1 Shd: DFILE1+COLOURFILE1 @ 6000h

0 1 0 HC: DFILE @ 4000h, COLOURFILE @ 6000h

1 1 0 HR: odd DFILE @ 4000h, even DFILE @6000h

HiRes Colour Scheme Select n n

0 0 0 BRIGHT Black on White

0 0 1 BRIGHT Blue on Yellow

0 1 0 BRIGHT Red on Cyan

0 1 1 BRIGHT Green on Magenta

1 0 0 BRIGHT Magenta on Green

1 0 1 BRIGHT Cyan on Red

1 1 0 BRIGHT Yellow on Blue

1 1 1 BRIGHT White on Black

Frame Interrrupt Control n n l ULA Frame Interrupt Disable

Timex MMU Select1 n n l Timex Horizontal MMU Bank Select

* Only read able if NR 8 (08h):D2 = 1
1 Not im ple mented on the ZX Spec trum Next

Port 64479 (FBDFh) – Kempston Mouse X position

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description

Current X Position n l l l l l l l l Value 0 – 255*

* Re turns the cur rent X po si tion of the mouse 0 - 255.
The value wraps from 255 to 0 on a right move ment and from 0 to 255 on a left move ment.

Port 65503 (FFDFh) – Kempston Mouse Y position

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description

Current Y Position n l l l l l l l l Value 0 - 255*

* Re turns the cur rent Y po si tion of the mouse 0 - 255.
The value wraps from 255 to 0 on a down ward move ment and from 0 to 255 on an upword
move ment.

Port 64223 (FADFh) – Kempston Mouse Button Status

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description

Mouse Button Flags1 n

l Left Mouse button status

l Right Mouse button status

l Middle Mouse button status

Mouse Wheel Position2 n l l l l Mouse Wheel position (Wraps)

1 Pressed = 1, Not Pressed = 0
2 Value 0 to 15. Up wards scroll 15 to 0 – wraps to 15; Downards scroll 0 to 15 – wraps to 0

Port 31 (1Fh) – Kempston Joystick 1 / Megadrive Pad 1 Status

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description

Joystick Movement Status n

l Right

l Left

l Down

l Up

Joystick Button Status n

l Fire 1 (MD = C/Z)

l Fire 2 (MD = B/Y)

l MD A/X (0 on Kempston)

l MD Start/Mode (0 on Kempston)

Kempston joy sticks and Megadrive Pads share ports but MD pads use more bits

Port 55 (37h) – Kempston Joystick 2 / Megadrive Pad 2 Status

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description

Joystick Movement Status n

l Right

l Left

l Down

l Up

Joystick Button Status n

l Fire 1 (MD = C/Z)

l Fire 2 (MD = B/Y)

l MD A/X (0 on Kempston)

l MD Start/Mode (0 on Kempston)

Kempston joy sticks and Megadrive Pads share ports but MD pads use more bits

Audio

Port 65533 (FFFDh) – PSG Control and Register Select

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description

Selected Register Status n l l l l l l l l Value in selected register of active PSG

Active PSG Control n

0 0 Reserved

1 1 PSG 0 made active*

1 0 PSG 1 made active

0 1 PSG 2 made active

Stereo Channel Control1 n

1 Reserved, must be 1

1 Reserved, must be 1

1 Reserved, must be 1

l Right Channel Enable

l Left Channel Enable

1 Reserved, must be 1

Register Select2 l l l l If 0000 selects a register from the Active PSG

* De fault value
1 If NR 8 (08h):D1 = 1 and D7 through D4 are not 0000

Port 49149 (BFFDh) – PSG Data

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description

Selected Register Status1 n l l l l l l l l Value in selected register of active PSG

Active PSG Register Data n l l l l l l l l Value to write to the register

1 Read able if ma chine type is ZX Spec trum Next or ZX Spec trum +3 only.

Ports 2511, 2232, 313, 2414, 635 (FBh, DFh, 1Fh, F1h, 3Fh) – DAC Channel A (Left)

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description

DAC output n l l l l l l l l 8-bit sample value

All DACs orig i nate from var i ous ZX Spec trum pe riph er als and com pat i ble mod els and are
kept for com pat i bil ity. DACs are en abled by set ting NR 8 (08h):D3 = 1

1 Found in So viet Penta/ATM
2 Found in SpecDRUM™
3 Found in SoundDrive 1
4 Found in SoundDrive 2
5 Found in Profi Covox

Ports 1791, 152, 2433 (B3h, 0Fh, F3h) – DAC Channel B (Left)

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description

DAC output n l l l l l l l l 8-bit sample value

All DACs orig i nate from var i ous ZX Spec trum pe riph er als and com pat i ble mod els and are
kept for com pat i bil ity. DACs are en abled by set ting NR 8 (08h):D3 = 1

1 Found in GS Govox
2 Found in SoundDrive 1 and Covox
3 Found in SoundDrive 2

Ports 1791, 792, 2493 (B3h, 4Fh, F9h) – DAC Channel C (Right)

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description

DAC output n l l l l l l l l 8-bit sample value

All DACs orig i nate from var i ous ZX Spec trum pe riph er als and com pat i ble mod els and are
kept for com pat i bil ity. DACs are en abled by set ting NR 8 (08h):D3 = 1

1 Found in GS Govox
2 Found in SoundDrive 1 and Covox
3 Found in SoundDrive 2

Ports 2511, 2232, 953 (FBh, DFh, 5Fh) – DAC Channel D (Right)

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description

DAC output n l l l l l l l l 8-bit sample value

All DACs orig i nate from var i ous ZX Spec trum pe riph er als and com pat i ble mod els and are
kept for com pat i bil ity. DACs are en abled by set ting NR 8 (08h):D3 = 1

1 Found in So viet Penta/ATM and SoundDrive 2
2 Found in SpecDRUM™
3 Found in SoundDrive 1 and Profi Covox

Storage

Port 227 (E3h) – divMMC Control

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description

RAM bank Control n n l l l l Memory Bank Select for 8K - 16 K region

MapRAM Control1 n n l MapRAM Enable

ConMEM Control2 n n l ConMEM Enable

1 Can only be set once. Only a power cy cle can re set it. NR 9 (09h):D3 can be set to 1 in or -
der re set this bit. When set, it re places the ex pected esxDOS ROM with divMMC RAM
bank 3

2 Can be used to man u ally con trol divMMC map ping. When set it maps in divMMC; 0K - 8K
will con tain the esxDOS ROM, 8K - 16K will con tain the se lected divMMC bank (from D0
through D3).
The divMMC au to mat i cally maps it self in when in struc tion fetches hit spe cific ad dresses in
the ROM. When this hap pens, the esxDOS ROM (or divMMC bank 3 if mapRAM is set) ap -
pears in 0K - 8K and the se lected divMMC bank ap pears as RAM in 8K - 16K.
DivMMC automapping is nor mally dis abled by NextZXOS. See NR 6 (06h):D4

Communication

Port 4155 (103Bh) – I2C SCL

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description

I2C Clock Line Control n l State of the Clock Line

Port 4411 (113Bh) – I2C SDA

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description

I2C Data Line Control n n l State of the Data Line

Port 231 (E7h) – SPI CS*

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description

SD Card 0 Select n n l Select SD Card 0

SD Card 1 Select n n l Select SD Card 1

PI SPI 0 Select1 n n l Select Pi SPI 0 on the GPIO pins

PI SPI 1 Select1 n n l Select Pi SPI 1 on the GPIO pins

FPGA Flash Select n n l Select the FPGA Flash ROM (Internal Use Only)

* The SPI port's data lines are ac tive low (0 to se lect).
1 Pi GPIO must be con fig ured for SPI. See NR 160 (A0h)

Five de vices are con nected to the SPI in ter face. The ZX Spec trum Next must be
SPI mas ter.
Only one of D0 through D3 can be 0 at one time. If not, the re sult will be no de vice se -
lected

Port 235 (EBh) – SPI Data

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description

SPI Data n n l l l l l l l l Read/Write data to the selected SPI device

Port 5435 (153Bh) – UART Control

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description

Prescalar MSB Value n n l l l Baud rate prescalar MSB

Prescalar MSB Write Enable n n l D2:D0 write enable

UART Select n n
0 ESP UART Select

1 Pi0 UART Select*

* Pi GPIO must be con fig ured for UART. See NR 160 (A0h)

Port 4923 (133Bh) – UART Transmit

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description

Read buffer status flag n l Set if read buffer contains received bytes

Transmitter busy flag n l Set if the transmitter is busy sending a byte

Read buffer full flag n l Set if the read buffer is full

Data Transmit n l l l l l l l l Send a byte to the connected device*

* There is no trans mit buffer so the pro gram must make sure the last trans mis sion is com -
pleted be fore send ing an other byte.

Port 5179 (143Bh) – UART Receive

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description

Data Receive n l l l l l l l l Reads a byte from the receive buffer*

Prescalar LSB Value1 n
0 l l l l l l l Lower 7 bits of the 14-bit prescalar value LSB

1 l l l l l l l Upper 7 bits of the 14-bit prescalar value LSB

* If the buffer is empty 0 is re turned.
1 The UART's baud rate is de ter mined by the prescalar ac cord ing to this for mula:

Prescalar = Fsys / baudrate; Fsys = Sys tem Clock from NR 17 (11h).
Ex am ple: If the sys tem is on a Dig i tal dis play, NR 17 (11h) in di cates that Fsys = 27000000.
The prescalar for a baud rate of 115200 is 27000000 / 115200 = 234.

Sprites

Port 12347 (303Bh) – Sprite Slot Select*1

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description

Sprite Collision flag n l Set if any two displayed sprites collide on screen

Max. No. of Sprites per line flag n l Set if maximum no. of sprites per line exceeded

Current Pattern Index Select2 n l l l l l l l Sets Current Pattern Index

Current Sprite Index Select1 n l l l l l l l Sets Current Sprite (0 - 127)

* Read ing the port clears all flags
1 The cur rent sprite and pat tern in dex are sep a rate quan ti ties in ter nally
2 The pat tern in dex is 6-bit in bits D0 through D5 and se lects pat tern 0 - 63 in the pat tern

RAM. Each pat tern is 256 bytes long. D7 can be used to off set 128 bytes half way through
the pat tern; this ac com mo dates 4-bit sprites whose pat terns are 128 bytes in size.

Port (57h) – Sprite Attributes

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description

Attribute Data n l l l l l l l l Attribute Data

Writes the cur rent sprite's at trib utes. Each sprite has ei ther 4 or 5 at trib utes and af ter all are
writ ten, the cur rent sprite pointer is ad vanced to the next sprite. The pointer wraps from
127 to 0.

Port (5Bh) – Sprite Pattern

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description

Pattern Data n l l l l l l l l Pattern Data

Writes a byte to the cur rent pat tern ad dress and ad vances the cur rent ad dress by one. The
pat tern ad dress is changed by writ ing the pat tern in dex in port 12347 (303Bh). A pat tern
in dex in di cates the start of a 256-byte range of data used to de fine an 8-bit sprite pat tern
or a 128-byte range of data use to de fine a 4-bit sprite pattern.

DMA

Port 107 (6Bh) – zxnDMA

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description

zxnDMA Control n n l l l l l l l l zxnDMA command value

The zxnDMA im ple ments a sub set of the Zilog Z80DMA ar chi tec ture while add ing a burst
mode pri mar ily used to play dig i tal mu sic. NR 6 (06h):D6 can be used to se lect a Z80DMA
com pat i bil ity mode. See https://www.specnext.com/the-zxndma/

Layer 2 Graphics

Port 4667 (123Bh) – Layer 2 Control

Data Bits
Group Name R W 7 6 5 4 3 2 1 0 Description

Memory Write Mapping Control n n l Enable Mapping for Memory Writes

Layer 2 Display Control n n l Enable Layer 2 Display

Memory Read Mapping Control n n l Enable Mapping for Memory Reads

Active/Shadow Control n n
0 Map Active Layer 21

1 Map Shadow Layer 22

Reserved n 0 0 Reserved, Must be 0

Layer 2 Map Type Select n n

0 0 First 16K of Layer 2 in the bottom 16K

0 1 Second 16K of Layer 2 in the bottom 16K

1 0 Third 16K of Layer 2 in the bottom 16K

1 1 First 48K of Layer 2 in the bottom 48K

* Mem ory pointed at by NR 18 (12h) or NR 19 (13 h) can be mapped into the lower 16K or
48K if Layer 2 mem ory map ping is en abled in D2 and/or D0. This mech a nism is sep a rate
from MMU and will over lay the pag ing state set by MMU but only if the mem ory ac cess
type matches the en able con di tion (Read-only, Write-only).

1 See NR 18 (12h).2 See NR 19 (13h).

The Expansion Bus

The Ex pan sion Bus is found in the back of
the ZX Spec trum Next and ex poses its CPU
to the world. As it too gets ad dressed by IN
and OUT com mands, it is listed be low:

 B
ottom

 S
ide

A11 28 28 Reserved Top S
ide

A9 27 27 A10

BUSACK 26 26 A8

ROMCS 25 25 RFSH

A4 24 24 M1

A5 23 23 NC

A6 22 22 NC

A7 21 21 WAIT

RESET 20 20 NC

BUSREQ4 19 19 WR

NC 18 18 RD

NC 17 17 IORQ

Reserved 16 16 MREQ

ROMCS 15 15 HALT

GND 14 14 NMI

IORQULA 13 13 INT

A3 12 12 D4

A2 11 11 D3

A1 10 10 D5

A0 9 9 D6

CLK 8 8 D2

GND 7 7 D1

GND 6 6 D0

Key 5 5 Key

+9V (PSU)5 4 4 ROMCS

+5V 3 3 D7

A12 2 2 A13

A14 1 1 A15

The ZX Spec trum Next Ex pan sion Bus

274 ZX Spectrum Next – User Manual

Chapter 23 – IN, OUT and the Next Registers The Expansion Bus

4 BUSREQ is Active High
5 This pin receives the unregulated power from the PSU line. If you plug a higher voltage PSU, that voltage will be

present at that pin and may damage your peripherals

The Memory

The Memory

Overview

In pre vi ous chap ters, we talked about bi nary code, bytes, words and long words. We also
dis cussed strings, float ing point and in te ger num bers. It's time to go into more de tail and
ex plore how your com puter stores in for ma tion we put into it.

The kind of data we're pro cess ing makes ab so lutely no dif fer ence to the com puter.
Whether it's mu sic, a game or a doc u ment, it ends up as a se ries of ones and ze ros or gan -
ised as bytes and stored in mem ory. We can rely on NextBASIC to man age that in for ma -
tion or we can do it our selves as long as we know how!

The ZX Spec trum Next is an 8-bit com puter with a 16-bit Ad dress Bus. That means that it
stores and ma nip u lates in for ma tion in 8-bit bytes, and can see at most 65536 of these
bytes at one time. Hold onto this in for ma tion for now as it's important.

ROM and RAM

Mem ory can be cat e go rized into two kinds: ROM and RAM. ROM (read-only mem ory)
can not be writ ten to whereas RAM (ran dom ac cess mem ory) can be both read and writ -
ten. RAM is where things like the pro gram and dis play con tents are stored be cause they
can change while the com puter is run ning. ROM can be used to hold some thing per ma -
nent like the NextBasic in ter preter or NextZXOS. You may have picked up on the dis cus -
sion of the ROM ear lier and may have been won der ing how we can load a ROM from a file
as de scribed in var i ous places around this book, when ROM is sup posed to be per ma -
nent and read-only (see for ex am ple Chap ter 1).

The truth of the mat ter is that, al though the ZX Spec trum Next con tains a phys i cal ROM
chip, this has noth ing to do with the ZX Spec trum Next's op er a tion. The phys i cal ROM is
used to con fig ure the Xilinx Spar tan 6 FPGA and a small amount is used to store a pro -
gram that configures the ma chine on boot. The ZX Spec trum Next it self only sees RAM
mem ory sup plied by up to four 512K SRAM chips. The un ex pand ed model has two chips
pres ent for a to tal of 1024K of mem ory and the ex panded model has four for a to tal of
2048K mem ory (See Chap ter 22 on how to up grade the RAM to the max i mum pos si ble).
The ROM con tents are loaded into a por tion of this RAM and then the hard ware is in -
structed to make that por tion read-only. So af ter the ma chine boots, those ar eas of RAM
be have just like ROM be cause run ning pro grams can not change any thing stored there.
This re pro duces the be hav iour of the orig i nal Spec trums which did use phys i cal ROMs to
store the ba sic in ter preter. In other words, for the pur poses of NextBASIC and NextZXOS
the ZX Spectrum Next indeed has ROM.

The Memory Map

In the in tro duc tion of this chap ter we talked about how the ZX Spec trum Next has a 16-bit
Ad dress Bus and how this fact means the com puter can see 65536 bytes (64 Ki lo bytes) of
mem ory, a fig ure that in cludes both ROM and RAM. That is enough to gen er ate the ob vi -
ous ques tion: But my com puter has 16 (or 32) times as much mem ory, what's the point of
hav ing it? And you would be ab so lutely right to ask this!

The an swer to that ques tion is that the com puter uses a mem ory ac cess tech nique known
as bank switch ing. In this tech nique there's a dis tinc tion be tween the max i mum ad dress -
able mem ory (the amount of mem ory that the CPU can see, ie 64K in our case) and the
amount of phys i cal mem ory in the sys tem. In the ZX Spec trum Next's case, the phys i cal
mem ory is di vided into equally sized por tions called banks and the 64K of mem ory that
the com puter can see is also di vided into the same sized por tions called slots. A vir tual
map of sorts is con structed that tells the hard ware what phys i cal mem ory bank ap pears in
each of the 64K's slots. We shall re fer to this vir tual map as the mem ory map. When ever in -
for ma tion lo cated in phys i cal mem ory is re quired, the spe cific phys i cal bank that holds it is
en tered into the mem ory map in one of its slots so that the CPU can see the bank in the
slot's ad dress range. Pag ing in the new bank re places what ever was there be fore be -

276 ZX Spectrum Next – User Manual

Chapter 24 – The Memory Overview

cause the CPU is given a new win dow in to a dif fer ent bank in phys i cal mem ory. This way
the us able phys i cal mem ory can far ex ceed the mem ory the CPU can nor mally see while,
at the same time, older soft ware is com pletely un aware and will continue to run properly
without performing any bank switching.

Memory Management

There are two bank ing schemes em ployed in the ZX Spec trum Next: Stan dard and
MMU-based bank ing. The Stan dard scheme is in her ited from the +3 and the other 128K
Spec trum mod els. The MMU scheme co-ex ists with the Stan dard scheme but it is unique
to the ZX Spec trum Next.

As you can see, in the mem ory map NextBASIC uses, the avail able 64K of ad dress able
mem ory is di vided into four slots of 16K each with the bot tom slot al ways oc cu pied by
ROM. Stan dard bank ing, in her ited from prior Spec trum mod els, se lects which 16K ROM
is vis i ble in the bot tom 16K slot (ad dresses 0 to 16383) and which 16K RAM bank is vis i ble
in the top 16K slot (ad dresses 49152 to 65535).

The Spec trum +3 in tro duced a new, so called, AllRam mode that could place a lim ited se -
lec tion of ar range ments of four 16K RAM banks into all four slots. This was not widely used
and is of ten for got ten by pro gram mers who mostly tar get the 128K Spec trum mod els prior
to the +3. A good ex am ple of AllRam mode is run ning CP/M, that re quires RAM at the bot -
tom of the address map.

There is a to tal of four 16K ROMs to se lect from (in her ited from the +3) and a to tal of 48
16K RAM banks avail able (112 in 2048K ZX Spec trum Nexts). If you make a quick cal cu la -
tion, that ac counts for 832K in the un ex pand ed ZX Spec trum Next. The re main ing por tion
of the 1024K is al lo cated to other uses, most no ta bly to divMMC mem ory. The NextZXOS
Startup menu re ports avail able RAM only, which will be ei ther 768K or 1792K.

The Stan dard bank ing scheme is con trolled by hard ware I/O ports (cov ered in the pre vi -
ous chap ter) and via the BANK com mand and its vari ants which we will ex am ine soon.

The MMU (mem ory man age ment unit) scheme is di a grammed be low. It is much more
flex i ble in that it can map any 8K bank of phys i cal RAM into any 8K slot of the CPU's ad -
dress able mem ory.

ZX Spectrum Next – User Manual 277

Memory Management Chapter 24 – The Memory

Figure 53 – Standard (NextBASIC) memory map

Figure 54 – MMU based memory map

The mem ory map, is di vided into eight slots of 8K named MMU0 through MMU7 and the
phys i cal mem ory is bro ken into 96 8K banks1. Plac ing a spe cific 8K bank n into the ad -
dress range 0 to 8191, we might say that 8K bank n has been writ ten to MMU0.

Since NextBASIC exposes phys i cal mem ory banks us ing the Stan dard scheme's 16K
size, we'll con cen trate only on this. More in for ma tion on us ing the ZX Spec trum Next's
MMU sys tem can be found at the end of this chap ter, in other sources such as the Spec -
trum Next Wiki at wiki.specnext.dev and in Vol ume 2 – Ad vanced ZX Spec trum Next pro -
gram ming of this manual.

Reading and Writing to Memory

In the nor mal course of op er a tions, NextZXOS and NextBASIC read and write mem ory on
your be half. As it has been dem on strated in pre vi ous chap ters, we some times need to ex -
am ine the mem ory's con tents or di rectly mod ify it. For these cases NextBASIC pro vides a
se ries of com mands and func tions to ex am ine and mod ify mem ory both in the mem ory
map as well as in the whole of the phys i cal mem ory. These are all vari a tions of two main
keywords, namely the PEEK (and PEEK$) func tions (to read the con tents of mem ory) and
the POKE com mand (to al ter the con tents of memory). The full list follows:

Com mand De scrip tion

PEEK addr Reads the byte at address addr

POKE addr,v Changes the contents of address addr to the byte value v

DPEEK addr Reads the word stored at addresses starting at addr (addr, addr+1)

DPOKE addr, v Changes the contents of addresses starting at addr (addr, addr+1) to contain the 16 bit value v

PEEK$ (addr, len/t)
Reads memory region of length len stored in the addresses beginning with addr and stores it in
a string –or–
Reads the string terminated with a user specified terminator t beginning with address addr

POKE addr, s Writes a string s in the addresses beginning with addr

BANK n PEEK o Reads the byte at offset o in bank n

BANK n POKE o, v Changes the contents in bank n at offset o to value v

BANK n DPEEK o Reads the word stored in bank n at offset o (o, o+1)

BANK n DPOKE o, v Changes the contents of bank n starting at offset o (o, o+1) to contain the 16 bit value v

BANK n PEEK$ (o,len/t) Reads a region of length len stored in bank n beginning at offset o and stores it in a string –or–
Reads the string terminated with a user specified terminator t from bank n beginning at offset o

BANK n POKE o, s Writes a string s in bank n beginning at offset o

Ta ble 23 – PEEK and POKE vari ants

As you can see from the ta ble above, NextBASIC pro vides us with a wealth of op tions to
ma nip u late the con tents of both the 64K mem ory map and the phys i cal mem ory as a
whole. These, com ple mented by the ex tended op tions pro vided by the BANK com mand,
which we will ex am ine fur ther be low, can cover al most any mem ory ma nip u la tion need
that may arise in the course of writing a program.

Be fore we con tinue fur ther with ex am i na tion of PEEK, PEEK$ and POKE, let's first be gin
with a warn ing of sorts: Us age of the non BANK vari ants is ex tremely dis cour aged. In -
stead it's best, if you use their BANK vari ants at all times. The rea son for that is two-fold
and goes back to Mem ory Banking.

Let's ex plain; as we said ear lier NextZXOS and NextBASIC up date por tions of the mem ory
map like the sys tem vari ables or the dis play mem ory if need be. What this means, is that
you can't re ally be sure a value you POKEd into the mem ory map will be there when you try
to re cover it with PEEK un less you take some mea sures first2.

Fur ther more, POKEing into the mem ory map un less you ab so lutely know what you're do -
ing, can have un in tended con se quences which could re sult in crash ing the machine.

278 ZX Spectrum Next – User Manual

Chapter 24 – The Memory Reading and Writing to Memory

1 224 in a fully expanded ZX Spectrum Next
2 Refer to the CLEAR statement further down this chapter

We'll first give an ex am ple of what could go wrong (it's for tu nately safe as an ex am ple) and
then we'll take a de tour and ex plain how the mem ory map it self is or gan ised from a
NextBASIC per spec tive be fore re turn ing to PEEK, POKE and their variants. Type:

10 POKE 16384,"ABCabc"

20 CLS

30 LET a$=PEEK$ (16384,6)

40 PRINT a$

From what we've talked about thus far, the in ten tion of the pro gram is ob vi ous (for now
also never mind what line 10 does; we'll dis cuss it later). First we put the word ABCabc into
ad dress 16384 of the mem ory map. Then we try to ex tract it from the same mem ory lo ca -
tion. RUN the pro gram. What do you see? Cer tainly not ABCabc you were ex pect ing. Now
mod ify lines 20 and 30 and re place 16384 with 20000 in both lines and RUN the program
again.

This is per haps a con trived ex am ple but it shows what hap pens when you try to use mem -
ory that is also be ing used by some thing else. In this case, ad dress 16384 is where the
con tents of the dis play is stored. Af ter plac ing the string with POKE in ad dress 16384, a
CLS is ex e cuted which clears the dis play and the stored string at the same time.

Here is a trick ier ex am ple:

10 LAYER 1,2

20 POKE 16384,255

30 POKE 24576,255

40 PRINT AT 1,0;"16384 = ";

PEEK 16384

50 PRINT "24576 = "; PEEK

24576

This pro gram se lects Layer 1,2 (HiRes) and then cre ates two solid and ad ja cent char ac ter
sized lines into the dis play via the POKE com mands in lines 20 and 30. Run ning the pro -
gram, the re sults al most seem cor rect ex cept the char ac ter sized line is only one character
wide.

The POKE to 24576 did not go to the dis play in bank 5 be cause NextBASIC placed a dif -
fer ent mem ory page in the mem ory map to cover the last half of bank 5.

Con trast with the fol low ing pro gram that does all its PEEKs and POKEs to bank 5 (the
BANK com mands will be ex plained in more de tail later). As we will see, PEEK and POKE
into a 16K bank, is done us ing an off set into said bank. This means that the “ad dress”
range is 0 through 16383; Banks are only 16K long af ter all. Bank 5, which holds the dis -
play is nor mally placed at ad dress 16384 in the mem ory map. Per form ing there fore a
POKE into ad dress 16384 is the same as POKE to off set 0 in bank 5. Like wise ad dress
24576 cor re sponds to off set 8192 in bank 5.

10 LAYER 1,2

20 BANK 5 POKE 0,255

30 BANK 5 POKE 8192,255

40 PRINT AT 1,0;"16384 = ";%

BANK 5 PEEK 0

50 PRINT "24576 = ";% BANK 5

PEEK 8192

This time, the POKE to 24756 (off set 8192) does go to bank 5 and you will see the solid
line twice as wide as the first pro gram.

ZX Spectrum Next – User Manual 279

Reading and Writing to Memory Chapter 24 – The Memory

NextZXOS and NextBASIC memory allocation

Be fore we be gin to elab o rate on NextZXOS' mem ory us age, it should be men tioned that
Stan dard mem ory man age ment and MMU man age ment are in ter nally syn chro nised for
most cases. Ev ery time a 16K bank is be ing paged in, the equiv a lent MMU unit gets the 8K
bank com po nent of the larger 16K bank NextZXOS uses. As men tioned pre vi ously
NextZXOS also sup ports AllRam mode where the ROM is paged out; this is mainly used
by CP/M. With this in for ma tion out of the way, let's see how NextZXOS uses the memory.

By de fault the first 9 RAM banks are used as fol lows:

Bank De scrip tion Ad dress Range

0 Standard 48K Spectrum memory 49152 – 65535

1 RAMdisk

2 Standard 48K Spectrum memory 32768 – 49151

3 RAMdisk

4 RAMdisk

5 Standard 48K Spectrum memory 16384 – 32767

6 RAMdisk

7 Used for workspace and data structures by NextZXOS

8 Used for additional screen data (for LoRes, HiRes and HiColour) and other data by NextZXOS

9 – 111 Available for user programs (By default banks 9,10 and 11 are used by Layer 2)

Gen er ally speak ing, banks 9+ are al ways avail able to the pro gram mer, and can be ac -
cessed us ing the BANK com mand, while banks 0 – 8 can be used with the fol low ing ex -
cep tions:

• Bank 0 can be used, only if CLEAR has set the RAMTOP to be low 49152.

• Bank 2 can be used, only if CLEAR has set the RAMTOP to be low 32768.

• Banks 1,3,4,6 can be used if the BANK 1346 USR com mand has been used.

• Banks 7 and 8 can never be used.

• Bank 5 can be used with cau tion.

• Banks 9, 10 and 11 can be used for other pur poses if you aren't us ing Layer 2 or you have
changed their as sign ments with the LAYER BANK com mand.

From the above, it is easy to sur mise what the ini tial bank as sign ments are af ter boot:

Slot 1 Slot 2 Slot 3 Slot 4

ROM Bank 5 Bank 2 Bank 0

In case you were think ing that this looks easy enough – I could page in any bank I want,
don't! In ac tu al ity, NextZXOS and NextBASIC ex pect cer tain things to be in cer tain places
at all times within the mem ory map which is or gan ised in the fol low ing man ner:

280 ZX Spectrum Next – User Manual

Chapter 24 – The Memory NextZXOS and NextBASIC memory allocation

Figure 55 – Memory map usage by NextBASIC

As seen in the fig ure above, the mem ory map is di vided into dif fer ent ar eas that store dif -
fer ent kinds of in for ma tion. The ar eas are only large enough for the in for ma tion that they
ac tu ally con tain, and if you in sert some more at a given point (for in stance by add ing a
pro gram line or vari able) space is made by shift ing up ev ery thing above that point. Con -
versely, if you de lete in for ma tion then ev ery thing is shifted down. Some ar eas as you can
see in clude an ad dress be low and a name above them whereas oth ers only a name. The
ar eas be gin ning at an ad dress, sig nify fixed points in mem ory such as the Dis play and
Col our Files, the Sys tem Vari ables and the Chan nel In for ma tion. The first three fixed points
are re quired while the fourth (Chan nel in for ma tion) is an unintended consequence! Let's
see why:

The Dis play and Col our Files are as we've seen in pre vi ous chap ters, leg acy ar eas. The
dis play hard ware ex pects them at these ad dresses and can not move in side the mem ory
map. They con tain the stan dard Layer 0 dis play mem ory and parts of Layer 1 with the rest
ap pear ing as needed and man aged by NextZXOS.

The Sys tem Vari ables on the other hand are the sys tem's di rec tory; they con tain most in -
for ma tion re gard ing both NextZXOS and NextBASIC and pro vide in for ma tion on the
bound aries be tween the rest of the mem ory ar eas on the mem ory map. In other words fol -
low ing the dis cus sion above, if, say, the last pro gram line changes, it's stored within the
area pointed to by the sys tem vari able PROG. Some of these lo ca tions are marked by the
names above the ar eas in the di a gram. A com plete list fol lows in the next chap ter. Note,
that these are NextZXOS vari ables and not NextBASIC vari ables, so typ ing these names
means noth ing to NextBASIC.

Now you prob a bly no ticed that we said most in for ma tion re gard ing NextZXOS and
NextBASIC and not all in for ma tion. That's be cause the in for ma tion that's held in Sys tem
Vari ables (or SYSVARS) deals with leg acy ap pli ca tions and com pat i bil ity. NextZXOS main -
tains even more un mov able in for ma tion else where, tucked away in pro tected banks and
manages it there.

Memory Areas and their use

Be low, let's ex am ine some of the mem ory ar eas por trayed in the fig ure above, as it's help -
ful to gen er ally know how things are laid out in the mem ory map.

The Dis play and Col our Files ar eas store the bitmap for the Layer 0 (and part of the Layer 1)
pic ture. As we saw in chap ters 15 through 17, it is rather cu ri ously laid out, so you prob a bly
won't want to PEEK or POKE in it. The up shot of all this is that if you're used to a com puter
that uses PEEK and POKE on the screen, you'll have to start us ing SCREEN$ and PRINT
AT in stead, or PLOT and POINT.

The Sys tem Vari ables area, con tains var i ous pieces of in for ma tion that tell the com puter
what sort of state the com puter is in. They are listed fully in the next chap ter, but for the mo -
ment note that there are some (called CHANS, PROG, VARS, E_LINE and so on) that con -
tain the ad dresses of the bound aries be tween the var i ous ar eas in mem ory. These are not
NextBASIC vari ables, and their names will not be re cog nised by the computer.

The Chan nel In for ma tion area con tains in for ma tion about the in put and out put de vices as
seen in Chap ter 21.

The NextBASIC Pro gram and Vari ables ar eas con tain your pro gram and its vari ables, or -
gan ised in stan dard data struc tures we will ex am ine in the fol low ing section.

The cal cu la tor is the part of the NextBASIC sys tem that deals with arith me tic, and the num -
bers on which it is op er at ing are held mostly in the Cal cu la tor Stack area.

The Spare area con tains the space so far un used.

The Ma chine Stack area is space re served for the CPU stack.

ZX Spectrum Next – User Manual 281

Memory Areas and their use Chapter 24 – The Memory

Sim i larly, the NextBASIC re turn stack area which was men tioned in Chap ter 5 main tains a
re cord of your pro gram's cur rently-ac tive sub rou tine and pro ce dure calls, loops and er ror
handlers.

The byte pointed by the RAMTOP vari able shows the max i mum ad dress that is re served
for use by a NextBASIC pro gram. We will visit this in more de tail, in the sec tion about the
CLEAR com mand below.

Fi nally the User De fined Graphics area holds all the def i ni tions to the sys tem's UDGs as
dis cussed in Chap ter 14.

NextBASIC Data Structures

NextBASIC stores num bers, strings, ar rays, pro gram ming lines and FOR...NEXT loops in
strictly de fined forms called data struc tures. The fol low ing dis cuss all these data struc tures
that are user ac ces si ble. In te ger-based vari ables, ar rays and con trol struc tures are not
avail able to the user and are hid den by NextZXOS in pro tected mem ory ar eas so they're
not covered here.

Each line of NextBASIC pro gram has the form:

Note that, in con trast with all other cases of two-byte num bers in the Z80n, the line num ber
here is stored with its more sig nif i cant byte (MSB) first: that is to say, in the or der that you
write them down (also known as Big-Endian or der).

A nu mer i cal con stant in the pro gram ap pears as ASCII text fol lowed by its bi nary form, us -
ing the char ac ter CHR$ 14 fol lowed by five bytes for the num ber itself.

The vari ables have dif fer ent for mats ac cord ing to their fea tures. The let ters in the names
should be thought as start ing off in lower case. The avail able vari ants and their for mats
are:

Num ber whose name is one let ter only:

 Num ber whose name is lon ger than one let ter:

 Ar ray of num bers:

282 ZX Spectrum Next – User Manual

Chapter 24 – The Memory NextBASIC Data Structures

Spe cif i cally for ar rays the or der of the el e ments is as fol lows:

• first, the elements for which the first subscript is 1;

• next, the elements for which the first subscript is 2;

• next, the elements for which the first subscript is 3;

and so on for all pos si ble val ues of the first sub script.

The el e ments with a given first sub script are or dered in the same way us ing the sec ond
sub script, and so on down to the last. As an ex am ple, the el e ments of the 3 x 6 ar ray b in
Chap ter 12 are stored in the or der b(1,1) b(1,2) b(1,3) b(1,4) b(1,5) b(1,6) b(2,1) b(2,2) ...
b(2,6) b(3,1) b(3,2) ... b(3,6).

Con trol vari able of a FOR...NEXT loop:

String:

Ar ray of char ac ters:

As you saw in the ex am ples above, nu mer i cal val ues are rep re sented as 5 bytes. These
are float ing-point val ues. In con trast to in te gers which are –as dis cussed in Chap ter 7 and
ref er enced in chap ters 10 through 12 – of a fixed 16 bit (or two-byte) size, float ing-point
num bers can rep re sent both dec i mal and in te ger val ues. Due to the cal cu la tions in volved,
their us age will slow down your pro grams; so avoid us ing them if you do not need dec i mal
points or val ues higher than 65535.

For float ing-point val ues, any num ber (ex cept 0) can be writ ten uniquely as: ± m x 2e

where ± is the sign, m is the man tissa, which lies be tween ½ and 1 (it can not be 1), and e
is a bi ased ex po nent.

Sup pose you write the frac tional m in bi nary. Be cause it is a frac tion, it will have a bi nary
point (like the dec i mal point in dec i mal) and then a bi nary frac tion (like a dec i mal frac tion).
So in binary:

one half is written as .1
one quarter is written as .01

three quarters is written as .11
one tenth is written as .000110011001100110011

and so on.

With our num ber m, be cause it is less than 1, there are no bits be fore the bi nary point, and
be cause it is at least ½, the bit im me di ately af ter the bi nary point is a 1. To store the num -

ZX Spectrum Next – User Manual 283

NextBASIC Data Structures Chapter 24 – The Memory

ber in the com puter, we use five bytes, as follows:

I. write the first eight bits of the man tissa in the sec ond byte (we know that the first bit
is 1), the sec ond eight bits in the third byte, the third eight bits in the fourth byte and
the fourth eight bits in the fifth byte

II. re place the first bit in the sec ond byte which we know is 1 by the sign: 0 for plus, 1
for mi nus

III. write the ex po nent +128 in the first byte.

For in stance, sup pose our num ber is 1/10:

1/10 =4/5 x 2-3

Thus the man tissa m is .11001100110011001100110011001100 in bi nary (since the 33rd

bit is 1, we shall round the 32nd up from 0 to 1), and the ex po nent e is -3.

Ap ply ing our three rules gives the five bytes:

There is an al ter nate way of stor ing whole num bers be tween -65535 and +65535:

I. the first byte is 0

II. the sec ond byte is 0 for a pos i tive num ber, FFh for a neg a tive one

III. the third and fourth bytes are the less and more sig nif i cant bytes of the num ber
(or the num ber +131072 if it is neg a tive),

IV. the fifth byte is 0.

This is es sen tially the two's com ple ment rep re sen ta tion we dis cussed in Chap ter 7 for in te -
gers with two ex tra bytes, one be fore and one af ter the num ber and an en tire byte ded i -
cated to the sign as op posed to one bit only. Com pared to the in te ger type sup plied by the
In te ger Ex pres sions eval u a tor, it is waste ful mem ory-wise and slower to process.

PEEK, POKE and their variants

Now that we've ex am ined more thor oughly what the mem ory map looks like to NextBASIC,
it's time to re visit the com mands and func tions that read and mod ify its con tents.

To in spect the con tents of one or more mem ory lo ca tions, we use the PEEK, DPEEK and
PEEK$() func tions; The PEEK vari ant func tions are al ways safe to use as they change
noth ing in mem ory; they can how ever give un pre dict able re sults in cases where a mem ory
lo ca tion is marked for mov ing. As we saw how ever, there are places in mem ory which are
un mov able; read ing in the Sys tem Vari ables area for ex am ple is a al ways a pre dict able
sce nario. For in stance, this pro gram prints out the first 21 bytes in ROM (and their ad -
dresses) – Note that if you want to ex am ine the con tents of the stan dard 48K ROM you
should use PEEK rather than DPEEK or PEEK$() as the lat ter two op er ate with a dif fer ent
ROM paged in. The ex am ple below however doesn't fall under that case:

10 PRINT "Address"; TAB 8; "Byte"

20 FOR a=0 TO 20

30 PRINT a; TAB 8; PEEK a

40 NEXT a

All these bytes will prob a bly be quite mean ing less to you, but the pro ces sor un der stands
them to be in struc tions tell ing it what to do.

DPEEK is sim i lar but since it re turns 16 bit val ues, the ex am ple above would have to be re -
writ ten as fol lows:

284 ZX Spectrum Next – User Manual

Chapter 24 – The Memory PEEK, POKE and their variants

10 PRINT "Address"; TAB 8;

"Word"

20 FOR %a=0 TO 20 STEP 2

30 PRINT %a; TAB 8; DPEEK %a

40 NEXT %a

This, as men tioned be fore will pro duce com pletely dif fer ent re sults as DPEEK is call ing a
dif fer ent ROM to work. We'll re write the ex am ple later when vis it ing the BANK com mand to
dis play that they're ac tu ally iden ti cal. Gen er ally speak ing, PEEKing into ROM is very much
use less and it's much more likely that you'll use PEEK to ei ther read a sys tem vari able or
read a value you've pre vi ously POKEd. PEEK$ () on the other hand re turns the val ues at
an ad dress in mem ory in the form of a string. Its syntax is as follows:

PEEK$ (ad dress, ar gu ment)

where ad dress is any ad dress in the mem ory map, while ar gu ment can be one of the fol -
low ing:

1. A num ber sig ni fy ing a length of char ac ters to be re trieved

2. A sin gle tilde ~ char ac ter, to find any bit-7 ter mi nated string (that means that
bit-7 of the last char ac ter in the string is set)

3. A tilde ~ char ac ter fol lowed by the ASCII code of one char ac ter that ter mi -
nates the string

PEEK$() can only be used in the con text of an as sign ment and not on its own. For ex am -
ple you CAN use LET a$ = PEEK$(ad dress,length) but you CANNOT use: PRINT
PEEK$(ad dress, length).

Let's look at an ex am ple which helps us search in mem ory (al beit very slowly):

10 RUN AT 3: REM this takes a

long time!

20 FOR %a=0 TO 65535

30 PRINT AT 0,0;"Now scanning

address:";%a

40 LET a$= PEEK$ (%a,8)

50 IF a$="Variable" THEN PRINT

AT 1,0;"Found word at

address:";%a: GO TO 70: REM

stop iterating here and go

below

60 NEXT %a

70 FOR %a=0 TO 65535

80 PRINT AT 3,0: "Now scanning

address:";%a

90 LET a$ = PEEK$ (%a, ~101)

100 IF a$="Variabl" THEN PRINT AT

4,0; "Found word at address ";%a

110 NEXT %a

You'll un doubt edly no tice that line 100 says Variabl in stead of Vari able and that's be cause
the ter mi na tor char ac ter we set in like 90 to look for, is not in cluded in the string re turned
by PEEK$(). What this pro gram ac tu ally finds is the ad dress in the mem ory map where
line 50 is stored! The sec ond half of this ex am ple (lines 70 on) is very much point less but
was made to show the flex i bil ity of PEEK$()'s ar bi trary ter mi na tion character search.

ZX Spectrum Next – User Manual 285

PEEK, POKE and their variants Chapter 24 – The Memory

Nor mally, it is much more likely to read for NUL ter mi nated strings (~0), FFh ter mi nated
strings (~255), of ten used in +3DOS/IDEDOS and per haps CR ter mi nated strings (~13),
if for ex am ple the data you're search ing for has been PRINTed with line sep a ra tors.

To change the con tents of a RAM ad dress in the mem ory map, we use the POKE or
DPOKE state ments. These have the form:

POKE ad dress, value1[,value2[,value3...[,valueN]]]
DPOKE ad dress, value1[,value2[,value3...[,valueN]]]

The abil ity to POKE gives you im mense power over the com puter if you know how to wield
it; and im mense de struc tive pos si bil i ties if you don't. It is very easy, by pok ing the wrong
value in the wrong ad dress, to lose vast pro grams that took you hours to type in. For tu -
nately, you won't do the com puter any per ma nent damage.

As we men tioned ear lier, POKE is gen er ally not safe to use within the con fines of the mem -
ory map, un less you ei ther know what you're do ing, or the area you're mod i fy ing is fixed
(like say the Layer 0 screen or at trib ute ar eas or the Sys tem Vari ables – the lat ter al ways
with cau tion). It's also safe to POKE within the mem ory map if you have used the CLEAR
com mand and mod ify the area above it.

Let's try mod i fy ing a sys tem vari able to show how pow er ful POKEing can be:

First, type test in the ed i tor and once you hit ENTER your com puter will com plain with a
buzz ing sound. The vari able that holds let length of that buzz is called RASP and it's lo -
cated in ad dress 23608 (5C38h) within the Sys tem Vari ables area.

Now, let's see how can we ad just that buzz. We'll start by look ing what is its cur rent value
with:

PRINT PEEK 23608

Then mod ify it with

POKE 23608, 16

Type test again and press ENTER. The buzz in di cat ing the er ror in your code, short ened
in length. You can ex per i ment with dif fer ent val ues. The new value you en ter must be be -
tween -255 and +255, and if it is neg a tive then 256 is added to it.

POKE is not con fined into a sim ple byte sized value as you may have sur mised. In fact it
can ac cept a mix of num bers and strings, in a comma sep a rated list of val ues with each
ac cept ing an op tional tilde ~ char ac ter suf fix. In the case of nu meric val ues, the op tional
tilde suf fix af ter each value makes that value 16 bits wide (a word) while in the case of
strings, the op tional tilde suf fix sets the most sig nif i cant bit of the last char ac ter in the
string, usu ally known as bit7-ter mi na tion. This is some times used in or der to store vari -
able-length strings in a com pact way. How ever, it's usu ally more con ve nient to use a byte
such 0 (NUL) (null-ter mi na tion), 255 (FFh) or 13 (0Ch) (CR) to ter mi nate a vari able-length
string in mem ory. Note that for DPOKE, the tilde is used af ter nu meric val ues to spec ify
val ues that should be writ ten to mem ory as a byte rather than a 16 bit word. You can there -
fore think of the tilde as a write this value in the op po site way to the de fault for this com mand
des ig na tor! Let's see a few examples:

POKE 32768,200

mod i fies the con tents of the byte ad dress 32768 to 200.

POKE 32768,8,9,10,"test",30000~,55

mod i fies the con tents of ad dress 32768 to 8, ad dress 32769 to 9, ad dress 32770 to 10,
ad dresses 32771 to 32774 to con tain the string test (or in other words the val ues 116, 101
,115 and 116 re spec tively – the ASCII codes for the let ters mak ing up the word test), ad -
dresses 32775 and 32776 to con tain val ues 48, 117 re spec tively (or 117 x 256 + 48 =

286 ZX Spectrum Next – User Manual

Chapter 24 – The Memory PEEK, POKE and their variants

30000) and fi nally ad dress 32777 to 55. In other words we POKEd 3 bytes, a string, a word
and a byte.

DPOKE 32768,1000,2000,3000,100~,2

mod i fies ad dresses 32768 though 32775 (pokes 3 words, a byte –with the tilde–and a
word).

In Chap ter 14 we briefly dis cussed POKE USR "let ter" . That may look like a sep a rate vari -
ant of POKE but in re al ity USR "let ter" is just as short cut to the ad dress of the UDG de fined
by let ter. There is a small ca veat that when used in a sin gle value con text, 8 suc ces sive
POKE USR com mands must be given (one for each row in the 8x8 ma trix of the UDG) so
it's al ways better if we use it in a list of val ues context like so:

POKE USR "A",1,3,7,15,31,63,127,255

which re de fines UDG A.

Us ing POKE with strings is equally pow er ful so it de serves a sep a rate ex am ple. Let's use
the ex am ple that used PEEK$() to search for a string in or der to dem on strate a bit of
NextBASIC mem ory ar eas magic! First de lete all lines af ter 60 and mod ify line 20 to read:

20 LET %a=22000 TO 65535

(This change is to make sure the pro gram does n't take for ever).

RUN the pro gram and when you find the ad dress, note it down, then do the fol low ing:

POKE address, "Horrible"

where ad dress is the ad dress you noted ear lier. Press ENTER, then write LIST and look at
line 50. See? Magic!

Note that us ing the first form of POKE to any ad dress be tween 0 and 16383 (the ROM slot)
will have no ef fect re gard less of what you at tempt to do as shown by this ex am ple:

FOR %f=0 TO 16383: POKE %f,0: NEXT %f

The same how ever is not en tirely ac cu rate for DPOKE and the string POKE ver sion of the
com mand. For ex am ple both the com mands that fol low will NOT write in the ROM slot but
WILL write in the RAM slot (it so hap pens as you see from the pre vi ous fig ure) that the first
area right af ter the ROM is DISP_FILE so you'll see a vi sual re sult immediately:

POKE 16383, "This is a test":PAUSE 0

and

DPOKE 16383, 65535: PAUSE 0

will both pro duce a vis i ble re sult in the up per left cor ner of the dis play while the ROM slot is
not af fected.

CLEAR

When look ing at the dif fer ent mem ory ar eas main tained by NextBASIC, we briefly men -
tioned the Sys tem Vari able RAMTOP. This vari able (lo cated at ad dress 23730) con tains
the ad dress of the last byte used by NextBASIC. Even NEW, which clears the RAM out,
only does so as far as this ad dress – so it does n't change the user-de fined graphics. You
can change the ad dress RAMTOP points to by putt ing it as an nu meric ar gu ment in a
CLEAR state ment as follows:

CLEAR new_RAMTOP

This ef fec tively does 4 things:

ZX Spectrum Next – User Manual 287

CLEAR Chapter 24 – The Memory

• clears out all the variables

• clears the display file (like CLS)

• does RESTORE

• clears the NextBASIC return stack and puts it at the new_RAMTOP address –
assuming that this lies between the calculator stack and the physical end of
RAM; otherwise it leaves RAMTOP as it was.

RUN also per forms a CLEAR, al though it never changes RAMTOP.

Us ing CLEAR in this way, you can ei ther move RAMTOP up to make more room for Next
BASIC by over writ ing the user-de fined graphics, or you can move it down to make more
RAM that is pre served from NEW. It can also be used to en sure that the ma chine stack is
be low BFE0h (49120) when in tend ing to call NextZXOS – this means that the stack will not
have to be sub se quently moved within your own ma chine code.

Type NEW, se lect NextBASIC, then CLEAR 23800 to get some idea of what hap pens to
the ma chine when it fills up. You'll im me di ately get an M RAMTOP no good er ror mes -
sage. Try ing CLEAR 23900 will re port 0 OK but at tempt ing to write a pro gram will stop
with a buzz ing sound very quickly. That means that the NextBASIC user pro gram mem ory
is now full and you will have to make room be fore typ ing any more. There are also two er ror
mes sages with roughly the same mean ing, 4 Out of mem ory and G No room for line.

It's worth men tion ing that the Clear op tion in the NextBASIC menu (ac ces si ble by press ing
the EDIT key) can also be used to CLEAR mem ory and it's par tic u larly use ful if you have
cleared RAMTOP too low and no lon ger have enough mem ory to en ter NextBASIC com -
mands as with the ex am ple above. It sets RAMTOP to just be low the cur rent UDG area (ie.
equiv a lent to CLEAR % DPEEK 23675-1, one less than the value in the UDG SysVar).

Memory Bank management with BANK

Un der NextBASIC the sys tem's mem ory ca pac ity is shown in the on-screen menus. It can
also be que ried pro gram mat i cally by ex am in ing the new sys tem vari able, MAXBNK, which
con tains the num ber of the high est us able bank in the sys tem (nor mally 47 or 111)3.

To make all the ex tra mem ory eas ily ac ces si ble to the user, NextBASIC pro vides a spe cial
com mand called BANK which can be com bined with a num ber of nor mal com mands to
ex tend their func tion al ity to the whole of the ZX Spec trum Next's mem ory and not just the
mem ory map ad dresses. We've seen some al ready used in the course of this guide, es pe -
cially in chap ters 15 through 18 as well as Chap ter 20.

Mem ory banks are marked as in-use or free by the user or by com mands that ac cess them
(BANK … PEEK / PEEK$ / POKE / COPY / ERASE / USR / LAYER, LAYER … BANK and
LOAD … BANK). Us ers can mark a bank as in-use or as free, by ei ther us ing an ex plicit
com mand from the list above or one of the two spe cial com mands BANK NEW var and
BANK n CLEAR.

BANK NEW var

Re serves the next avail able free bank num ber and as signs it to the nu meric vari able var,
ready for use with and by other BANK com mands. This com mand is use ful for al lo cat ing
banks for use in NextBASIC, al low ing for cases where a res i dent ma chine code pro gram
has pre vi ously al lo cated banks for its own use.

Note, that is not es sen tial to use this com mand, as com mands such as LOAD … BANK
will au to mat i cally al lo cate the spec i fied bank for use by NextBASIC, but only if the spec i -
fied bank is not al ready in use by a res i dent ma chine code program.

Let's try a small ex am ple. As sum ing you have a 2048K ZX Spec trum Next; type the fol low -
ing pro gram:

288 ZX Spectrum Next – User Manual

Chapter 24 – The Memory Memory Bank management with BANK

3 The dot command .mem also returns the memory information, although measured in 8K banks.

10 FOR %f = 0 TO 111:REM 47 for a

1024K Next

20 BANK NEW a

30 PRINT AT 0,0; "Allocating bank:"; a

40 NEXT %f

Once you RUN it, the pro gram will be gin to al lo cate mem ory banks and print the ones it al -
lo cates; you'll no tice two things: Al lo ca tion be gins at bank 111 (47 if us ing an un ex pand ed
ver sion) and pro gresses back wards and that pro gram ex e cu tion will stop abruptly with a 4
Out of mem ory er ror re port once you reach a bank that's al lo cated by the sys tem as de -
scribed in the NextZXOS and NextBASIC Mem ory Al lo ca tion sec tion. In deed, if you use the
dot com mand .mem then you'll see that you have 0 banks free (0K). In or der to free up a
bank to be used, you will need to use the BANK n CLEAR command whose syntax is as
follows:

BANK n CLEAR

Marks bank n as free for use by other parts of the sys tem (eg dot com mands).

Let's try to free a bit of mem ory af ter the mess we've made with the pre vi ous pro gram.
With out mak ing any more changes, let's try:

BANK 11 CLEAR

More likely than not the sys tem will re port: In Use, 0:1. What has hap pened? Most likely
that the bank it self is in use by the sys tem. Let's try again:

BANK 12 CLEAR

This time the sys tem will most likely re port: 0 OK, 0:1. We can ver ify this by run ning .mem
again. This time it will show us 2 Banks free (Re mem ber .mem re ports mem ory in MMU
sized banks – that is 8K). Bank 11 you tried to free orig i nally un less the sys tem has n't been
mod i fied, is be ing used by Layer 2 (which takes 3 banks, by de fault 9,10 and 11but can be
changed by the LAYER...BANK com mand) so it's right fully marked as in-use. Note here
that if you're not us ing Layer 2, the banks it oc cu pies CAN be used for other pur poses in -
clud ing ma chine code pro grams. They just cannot be released.

Banks marked as in-use, re main re served af ter a NEW com mand, and are only re leased
at a re set (or with this BANK n CLEAR). BANK CLEAR re ports A In valid Ar gu ment, 0:1 if
you try to clear banks 1,3,4 and 6 even if you have given the BANK 1346 USR com mand
which is de scribed below.

NextZXOS al lo cates 64K to the RAMdisk by re serv ing banks 1,3,4 and 6; BANK 1346
USR al lows you to re lease these for use by your pro grams. Once you give the com mand:

BANK 1346 USR

the fol low ing things hap pen; first all files in the RAMdisk are de leted, then the drive it self is
un mounted and us ing BANK com mands on these banks stops pro duc ing er rors. To undo
this ac tion and re in state the RAMdisk you will need to use:

BANK 1346 FORMAT

which will erase the con tents of these banks and re-at tach them to the RAMdisk. The disk
it self how ever will need to be man u ally mounted again by us ing the MOVE...IN com mand.
See Chap ter 20 for de tails.

Bank con tents can be cop ied and erased in whole or in part us ing the BANK COPY and
BANK ERASE com mands.There's also a spe cific one that cop ies data quickly to and from
the screen but we'll look at that sep a rately. The syn tax to copy bank data is:

BANK source_bank COPY [source_off set, len] TO des ti na tion_bank [,dest_off set]

ZX Spectrum Next – User Manual 289

Memory Bank management with BANK Chapter 24 – The Memory

where source_bank is a read able bank num ber to copy from while des ti na tion_bank is a
writeable bank num ber. Source_off set and len sig nify the lo ca tion within the source bank
and the size in bytes of the mem ory chunk we're copy ing. If the lat ter are spec i fied, then
the dest_off set must also be spec i fied. Let's try:

BANK 9 COPY TO 47

will copy the bank hold ing the first third of Layer 2 into bank 47. While,

BANK 1 COPY TO 47

will re turn A In valid ar gu ment, un less BANK 1346 USR has been used!

BANK 9 COPY 8192, 8192 TO 47, 0

will copy the bot tom half of the first third of the Layer 2 screen to the start of bank 47 (Once
you un tan gle that tongue-twister you can see how this can cre ate in ter est ing blinds ef -
fects).

It's also quite handy to quickly erase the whole or part of a bank (fill it with ze roes or an ar bi -
trary byte value). This is ac com plished by the BANK ERASE com mand whose syn tax is:

BANK n ERASE [off set, len][,][value]

where n is the num ber of writeable bank, off set is the op tional start ing point of the erase
and len is the length (in bytes) of the area to be erased. The op tional value will fill the area
with a byte of your choos ing or –if omit ted– 00h. Here are some ex am ples us ing Layer 2
and an im age pres ent in your Sys tem/Next™ dis tri bu tion:

10 CD "c:/demos/bmp256con

verts/bitmaps"

20 LAYER 2,1

30 .bmpload critters.bmp

40 BANK 9 COPY TO 111: REM

first we copy it

50 PAUSE 0: REM wait for a

key

60 BANK 9 ERASE 128: Erase it with

value 128 which is by default a

red colour for Layer 2

70 PAUSE 0: REM wait for a

key

90 BANK 111 COPY TO 9: REM restore it

100 PAUSE 0: REM wait for a

key

110 LAYER 2,0: LAYER 0

You can see eas ily how fast this hap pens (and how it can be used for a myr iad of ap pli ca -
tions)

Using BANK with graphics

Over the course of chap ters deal ing with graphics, we've used a lot of graphics-re lated
com mands that in volved the use of BANK. These are BANK LAYER, LAYER BANK,
LAYER PALETTE BANK, SPRITE PALETTE BANK, SPRITE BANK, TILE BANK and TILE
DIM all ben e fit ing all pro vid ing sig nif i cant speed en hance ments both in de vel op ment and
in usage.

We saw above the use of BANK COPY to copy data from one bank to an other. This in -
cludes Layer data as they too are kept in banks and man aged by NextZXOS. There is how -

290 ZX Spectrum Next – User Manual

Chapter 24 – The Memory Using BANK with graphics

ever a spe cially crafted com mand that does this and more as it adds more op tions
spe cif i cally tuned to the re quire ments of dis play. Un like BANK COPY, this is de signed to
up date small ar eas of the screen to fa cil i tate ef fects and es pe cially an i ma tion. The com -
mand is BANK LAYER and it is used to quickly copy data from a mem ory bank to the
screen in the cur rent mode, or vice versa. The syntax is as follows:

BANK n LAYER x,y,w,h|off set TO [ras ter_op] off set|x,y,w,h

where n is the source OR des ti na tion bank num ber, x and y is the top left char ac ter po si -
tion ex pressed in char ac ter col umn and row co or di nates, w, h are the width and height
again in char ac ters of the area to be cop ied from or cop ied to, off set is the start ing off set in
the bank we'll be copy ing to or from while ras ter_op, is an op tional sym bol mod i fier to TO
that af fects the data be ing cop ied at their des ti na tion (does not affect the source data).

TO ras ter_op can be one of the fol low ing val ues:

TO Straightforward copy
TO & ANDs the copied data onto the destination
TO | ORs the copied data onto the destination
TO ^ XORs the copied data into the destination
TO ~ Copies data into the destination unless it is equal to the

global transparency colour (default E3h); if so, leaves
the destination unchanged

The area of screen cop ied by BANK...LAYER is de fined as with Win dows in char ac ters.
That means that char ac ter po si tions range from 0 to 31 for x and 0 to 23 for y, for all modes
ex cept LoRes, where they range from 0 to 15 for x and 0 to 11 for y.

Data cop ied from the screen is laid out as fol lows, de pend ing upon the cur rently se lected
layer (see Chap ter 16):

Standard resolution (Layers 0 and 1,1)

The at trib ute data co mes first, stored as h con sec u tive rows of at trib utes, w bytes wide.
Fol low ing this is the screen data, stored as h ´ 8 con sec u tive rows of pixel data, w bytes
wide. The to tal mem ory used is there fore w ´ h ´ 9 bytes.

HiRes (Layer 1,2)

In this mode, each char ac ter po si tion is 16 pix els wide, com pris ing a left and right “half”.
The screen data is stored as h ́ 8 con sec u tive pixel rows of data. For each row, the first w
bytes com prise the left halves of all char ac ters. The next w bytes in the row com prise the
right halves of all the char ac ters. The to tal mem ory used is there fore w ´ h ´ 16 bytes.
HiColour (Layer 1,3)

The screen data is stored as h ́ 8 con sec u tive pixel rows of data. For each row, the first w
bytes com prise the pixel data. The next w bytes in the row com prise the at trib ute data. The
to tal mem ory used is there fore w ´ h ´ 16 bytes.

LoRes (Layer 1,0) and Layer 2

The data is stored as h 8 con sec u tive pixel rows of data. For each row, there are w ´ 8
bytes, with each byte rep re sent ing a sin gle pixel. The to tal mem ory used is there fore w ́ h
´ 64 bytes.

In the pre vi ous sec tion, we dealt with bank man age ment. The fol low ing com mand could
very well be long there, but since it deals with mem ory man age ment of the graphics sub -
sys tem and spe cif i cally with Layer 2, we will cover it here. LAYER BANK re de fines which
banks will store Layer 2 dis play data (the front buffer) and which will act as the back buffer
(for ren der ing). The syn tax is as follows:

LAYER BANK n,m

ZX Spectrum Next – User Manual 291

Using BANK with graphics Chapter 24 – The Memory

where n is the front buffer base bank num ber for Layer 2 (this also sets n+1 and n+2) and
m is the back buffer base bank num ber (and also sets m+1 and m+2). These val ues can
be the same and both de fault to 9. Un like other LAYER com mands, it can be ex e cuted in
any mode. For ex am ple to move Layer 2 to banks 13 to 15 (front buffer) and 16 to 18 (back
buffer):

LAYER BANK 13,16

If we now give:

BANK 9 CLEAR

We can see that bank 9 (the orig i nal base bank for Layer 2) can now be re leased. The ef -
fects of LAYER BANK can be un done ei ther by re vers ing the com mand, with NEW or with
LAYER CLEAR.

Mem ory banks are also ideal to store pal ette in for ma tion as pal ettes are ba si cally a se ries
of 256 bytes or words (de pend ing on your PALETTE DIM set ting). There are two com -
mands for that: LAYER PALETTE BANK and SPRITE PALETTE BANK. Their syn tax is vir -
tu ally iden ti cal and is as follows:

LAYER|SPRITE PALETTE n BANK b,off set

where n is the pal ette num ber (0 or 1), b is the bank num ber and off set is the start lo ca tion
in the bank where the pal ette val ues are lo cated. As men tioned above, if PALETTE DIM
was set to 8, LAYER and SPRITE PALETTE BANK will load 256 bytes from bank b, off set,
while if PALETTE DIM was set to 9, 512 bytes will be loaded.

Apart from the pal ettes, sprite def i ni tions4 them selves can be stored and ex changed
through the use of mem ory banks. The com mand and its syn tax to de fine ei ther all 64
sprites at once (64 sprites of 256 bytes each equals a full bank of 16K) or some of them is:

SPRITE BANK b [, off set, pat tern_no, num ber_of_sprites]

where b is the bank num ber hold ing the sprite pat tern def i ni tions, off set is the start ing lo -
ca tion in the bank where sprite def i ni tions are stored, pat tern_no is the start ing pat tern
num ber that's de fined by the com mand and num ber_of_sprites is the to tal num ber of
sprites that are de fined. If we store all 64 sprite def i ni tions within a bank, then the com -
mand can be as simple as:

SPRITE BANK 14

which will load 64 sprite def i ni tions from bank 14. Al ter na tively to load 32 sprite def i ni tions
start ing with pat tern num ber 4 from bank 15 off set 256 would require:

SPRITE BANK 15,4,256

Sprites and tiles (not to be con fused with Layer 3 tiles) are closely re lated. As a mat ter of
fact as we saw in Chapter 18, their main dif fer ence is that tiles are man aged by soft ware
and not hard ware, so it fol lows that NextBASIC pro vides sim i lar com mands to man age
them at least mem ory-def i ni tion wise. The BANK com mands re lated to tiles are TILE
BANK to de fine the tiles them selves and TILE DIM to de fine the tilemap, that is how are the
tile pat terns or gan ised. The syntax of the first is:

TILE BANK n

where n is the num ber of the base bank hold ing the tiles. If more are needed as de fined by
the tilemap, they will be taken from sub se quent bank num bers (up to an ad di tional 3 mak -
ing a to tal of 4 banks as signed to tile def i ni tions). The tilemap it self is also held in a bank
and managed with:

292 ZX Spectrum Next – User Manual

Chapter 24 – The Memory Using BANK with graphics

4 Although the ZX Spectrum Next's Sprite Engine can define and manipulate a total of 128 sprites, these only work with
4 bit palette definitions which are not supported by NextBASIC. Instead NextBASIC supports a total of 64 sprites of
256 colours each

TILE DIM n,off set, w, tile_size

which de fines the tilemap in bank n, start ing at lo ca tion off set with width w which ranges
from 1 to 2048 and tile size tile_size (8 for 8 ´ 8 pix els or 16 for 16 ´ 16 pix els).

Using BANK with files

The en tire range of BANK com mands for file man age ment, has been cov ered in length
through out Chap ter 21 – NextZXOS and al ter na tives so we'll just in clude them here for
com plete ness and as a quick ref er ence. As a gen eral guide line for syn tax, BANK does not
needs an off set and length for SAVE op er a tions ex cept the ones that deal with fixed ar eas.
The com mands that deal with files and their syntax are:

LOAD|SAVE|VERIFY file spec BANK n [,off set,length]

and the ad di tional

SAVE|LOAD file spec LAYER

that are spe cial short cut com mands to load and save the cur rent layer dis play. This ob vi -
ously in cludes bank ac cess (as for ex am ple Layer 2 oc cu pies 3 banks) and thus it's in -
cluded here. In all the above, file spec is a valid file spec for the filesystem you're ac cess ing,
n is the bank num ber while the op tional off set and length must be given to gether to sig nify
the start ing lo ca tion and length of the data chunk we're ma nip u lat ing. If omit ted the
entirety of the bank is used.

Extending NextBASIC Programs with BANK

Un like pre vi ous it er a tions of Sinclair BASIC, NextBASIC makes it pos si ble to write pro -
grams larger than the ap prox i mate 41K which used to be the norm with pre vi ous ZX Spec -
trum mod els. This is achieved through the use of BANK com mand ex ten sions; whole
sec tions of NextBASIC pro grams can be cop ied into any mem ory bank avail able to the
user (and saved/loaded with the SAVE / LOAD...BANK com mands as de scribed in Chap -
ter 20 as well as the pre vi ous sec tion). Pro grams can then switch be tween lines in the
“main” pro gram area and those held in a bank.

The fol low ing new com mands are avail able to man age banked sec tions of NextBASIC
pro grams: BANK LINE, BANK LIST and BANK LIST PROC(), BANK MERGE, BANK GO
TO, BANK GOSUB, BANK PROC and BANK RESTORE. We have cov ered these as well
in the ap pro pri ate sec tions of this guide, so they're men tioned here in brief for com plete -
ness and ref er ence. Syn tax is as follows

BANK n LINE x,y

Cop ies lines x through y (in clu sive) from the main pro gram to bank n. The to tal num ber of
bytes used in the bank will be shown. Once this has been done, it is not pos si ble to
change or de lete any lines in the banked sec tion, ex cept by com pletely over writ ing the
bank's con tents us ing an other BANK...LINE com mand or by ex e cut ing a com mand that
will re place the bank's con tents with something else.

BANK n LIST [l | PROC name()]

Lists lines, op tion ally start ing with line l or from a pro ce dure named name, in bank n.

BANK n MERGE

Copy all lines back from bank n into the main pro gram. This won't over write line num bers
that did not ex ist in the source bank

BANK n GO TO l

per forms a GO TO line l in bank n. To GO TO to a line in the main pro gram from a banked
sec tion, the bank num ber should be 255.

BANK n GOSUB l

ZX Spectrum Next – User Manual 293

Using BANK with files Chapter 24 – The Memory

branches us ing GOSUB to the sub rou tine lo cated at line l in bank n. To GOSUB to a sub -
rou tine in the main pro gram from a banked sec tion, as with GO TO above, the bank num -
ber should be 255.

BANK n PROC name (parameter1[,...,parameter8])[TO variable1[,...,variable8]]

branches to the PROC named name lo cated in bank n with op tional pa ram e ters
parameter1 to parameter8 and op tional re turn val ues stored in variable1 to variable8. To
branch to a PROC in the main pro gram from a banked sec tion, as with GO TO above, the
bank num ber should be 255.

BANK n RESTORE l

Sets the DATA pointer to line l in bank n ready for the next READ op er a tion.

It's noted that BANK LINE and BANK MERGE can only be given as di rect com mands and
not as part of a saved pro gram be it in a bank or in the main sec tion.

NextZXOS Paging Mechanism Overview

As we dis cussed in the in tro duc tion to this chap ter the CPUs used in all pre vi ous mod els
of the ZX Spec trum line as well as this one, can only ad dress 65536 bytes. The orig i nal
128K ZX Spec trum crammed in, more than twice the amount of mem ory than it could ad -
dress clock ing in at 131072 bytes of RAM and 32768 bytes of ROM mak ing 163840 bytes
(160K) in all. The +3 that fol lowed it a few years later in creased that to al most 192K with an
ad di tional 32K of ROM while the Next has in creased that num ber even fur ther to 1024K or
2048K de pend ing on if you have ex panded the ram on your machine or not.

All the ex tra mem ory is hid den from the pro ces sor by the hard ware us ing a pro cess called
pag ing – NextBASIC (and the pro ces sor) al ways sees the mem ory as 16K of ROM and
48K of RAM (or 64K of RAM with no ROM in AllRam mode – though that is never used by
NextBASIC and NextZXOS and it's re served for CP/M).

While the pro ces sor can in deed ad dress only 64K of mem ory at once, the ex tra mem ory
can be slot ted in and out of that 64K at will as seen in the in tro duc tion to this chap ter. Con -
sider an old juke box. Al though it (and you) can only deal with one al bum at a time, there
are many more al bums there which can be se lected with the right but tons. So, even
though there's much more in for ma tion than you can use at any one time, you can pick and
choose which part is relevant.

It is much the same for the pro ces sor. By set ting the right bits in an I/O port, it can pick and
choose which chunks of the avail able of mem ory it wants to use. When in non–banked us -
age of NextBASIC as well as when us ing leg acy soft ware most of the mem ory is ig nored,
but for Next mode games play ing, Layer 2 graphics and the use of all the new ca pa bil i ties
the ZX Spec trum Next is equipped with, hav ing six teen or even thirty two times as much
RAM is re ally rather useful!

Nor mally, us age of the ad di tional mem ory ca pa bil i ties are han dled di rectly by NextZXOS
and NextBASIC ei ther au to mat i cally or by us ing the BANK com mands, how ever in or der to
un der stand the un der ly ing mech a nisms we can elaborate a little bit.

Look again at the mem ory map; RAM pages 2 and 5 are al ways in the po si tions shown
when NextBASIC is used, though there's no rea son why they should n't be in the “leg acy
banked” sec tion (C000h to FFFFh) – how ever, it would be dif fi cult to see any use for this.

For leg acy us age (usu ally where pro grams gen er ate very strictly timed video ef fects),
RAM banks are con sid ered as be ing of one of two types: con tended (mean ing that there's
a com pe ti tion be tween the CPU and the ULA for ac cess to them) and uncontended
(mean ing the CPU has their exclusive use).

Only four banks are ever con tended: banks 4 to 7. The rest of the avail able RAM banks are
al ways uncontended. This is a set ting that can be turned on an off by us ing a Next Reg is ter
as we saw in the pre vi ous chap ter. It's turned OFF by de fault, but for com pat i bil ity rea -
sons, NextZXOS turns it ON when load ing soft ware in a leg acy for mat (.SNA, .Z80 or

294 ZX Spectrum Next – User Manual

Chapter 24 – The Memory NextZXOS Paging Mechanism Overview

.TAP). When writ ing soft ware that may be used in older mod els, place any ma chine code
which has crit i cal tim ing loops (such as mu sic) in uncontended banks5.

As sum ing con ten tion has been turned ON, to turn it OFF you will need to is sue a:

REG 8, % REG 8|@01000000

com mand, set ting there fore NextREG 8, D6 to 1. The in verse (set ting it to 0) will turn con -
ten tion ON again for these banks. Al ter na tively you can just press the NMI but ton and set
it/re set it us ing the NMI menu un der Set tings > Gen eral which is much much easier!

The ZX Spec trum Next uses a com bi na tion of pag ing tech niques we called stan dard at the
be gin ning of this chap ter. In re al ity, it uses three: The 128K style pag ing (de scribed be low)
con trolled by I/O ad dress 7FFDh, the +3 style pag ing con trolled by I/O ad dress 1FFDh
ex tended by Next Mem ory Bank Se lect con trol con trolled by I/O ad dress DFFDh.

The rea son for this com pli cated scheme is that the orig i nal ZX Spec trum 128K which in tro -
duced bank ing, only had 8 pages of RAM (8 ́ 16K) to deal with and only two of ROM (2 ́
16K) so there was no ap pro pri ate care taken for fur ther ex pan sion. In an orig i nal 128K ma -
chine only the top slot (slot 4) of the ad dress space was banked in and out by the user (lo -
cated at ad dress range C000h to FFFFh.

When the ZX Spec trum +3 came out, there were two more 16K ROMs in tro duced, which
did n't orig i nally ex ist; that paired with the need to run CP/M that re quires RAM at the bot -
tom of the ad dress map, ne ces si tated the cre ation of yet an other I/O ad dress: 1FFDh.

Be tween these two ports, there are enough bits to ad dress all the RAM pages of an un ex -
pand ed Next, how ever, on a fully ex panded Next, one more port was needed to be able to
ad dress the en tire phys i cal mem ory avail able. These meth ods are all ex tend ing one an -
other so back wards com pat i bil ity is en sured, while the in tro duc tion of the MMUs al lows for
a more straight for ward mem ory man age ment system for user programs.

Let's be gin how this all works by first look ing at 128K style pag ing. The hard ware port that
con trols it, is at I/O ad dress 7FFDh (32765). The bit lay out for this port is as fol lows:

Bit D7 D6 D5 D4 D3 D2 D1 D0

Description Disable
Paging

ROM
Select

Screen
Select

RAM Select

D2 to D0 is a three bit num ber that se lects which RAM page goes into the C000h to FFFFh
slot. In pre vi ous mod els (such as the +3e) in BASIC, RAM page 0 was nor mally in-situ,
and when ed it ing, RAM page 7 was paged in for var i ous buff ers and scratchpads.

D3 switches screens: Screen 0 (the Dis play + Col our Files) was held in RAM5 (be gin ning
at 4000h) and it was the one that BASIC used, screen 1 was held in RAM7 (be gin ning at
C000h) and could only be used by ma chine code pro grams.

D4 de ter mines whether ROM0 (the ed i tor ROM) or ROM1 (the 48K BASIC ROM) is paged
into Slot 1 at 0000h to 3FFFh.

D5 is a safety fea ture – once this bit is set, no fur ther pag ing op er a tions will work. This is
nor mally used when the ma chine as sumes a stan dard 48K Spec trum con fig u ra tion and all
the mem ory pag ing cir cuitry is locked out. On pre vi ous mod els, this meant that it could n't
be turned back into a 128K ma chine other than by rebooting; how ever, the sound chip can
still be driven by OUT ei ther from 48K Ba sic or ma chine code. On the ZX Spec trum Next
how ever, you can over ride that lock switch it back to on by set ting NextREG 8, D7 to 1.

Note here that the 16K Bank 5, is the bank read by the ULA to de ter mine what to show on
screen for Layer 0 (and 1). The ULA con nects di rectly to the larger mem ory space ig nor ing
map ping; the screen is al ways 16K Bank 5, no mat ter where in mem ory it is (or if it is

ZX Spectrum Next – User Manual 295

NextZXOS Paging Mechanism Overview Chapter 24 – The Memory

5 For comparison, executing NOPs in contended RAM will give an effective clock frequency of approximately 2.6MHz
as opposed to the normal 3.5MHz in uncontended RAM for the base clock speed. This is a speed reduction of about
25%

switched in at all). Set ting D3 of Mem ory Pag ing Con trol (7FFDh) will have the ULA read
in stead from 16K Bank 7 (oth er wise known as “shadow screen”), which can be used as an
al ter nate screen. Be ware that this does not map 16K bank 7 into RAM; to al ter 16K bank 7
it must be mapped by other means.

Let's now ex am ine the bit lay out of port 1FFDh used by the +3.

Bit D7 D6 D5 D4 D3 D2 D1 D0

Description Par. Port
Strobe6

Disk
Motor3

Switch type ROM / RAM switching

When D0 is 0, D1 has no ef fect and D2 is a “ver ti cal” ROM switch (ie be tween ROM0 and
ROM2 or be tween ROM1 and ROM3). D4 at 7FFDh on the other hand is a “hor i zon tal”
ROM switch (ie. be tween ROM0 and ROM1, or be tween ROM2 and ROM3). The fol low ing
di a gram il lus trates the var i ous ROM switch ing possibilities:

It is best to think of D4 in port 7FFDh and D2 in port 1FFDh com bin ing to form a 2-bit num -
ber (rang ing from 0 to 3) which de ter mines which ROM oc cu pies the mem ory area 0000h
to 3FFFh (16K Slot 1). D4 of port 7FFDh is the least sig nif i cant bit and D2 of 1FFDh is the
most sig nif i cant bit.

D2/1FFDh D4/7FFDh ROM Used

0 0 0

0 1 1

1 0 2

1 1 3

ROM switch ing (with D0 of 1FFDh set to 0)

Ty ing it all to gether, we can eas ily sur mise that 128 style mem ory man age ment can only
al ter the bank ad dressed at C000h (For 16K banks that would be Slot 4, or for 8K
MMU-type banks Slots 7 and 8). The ac tive 16K bank at C000h is se lected by writ ing the 3
LSBs of the 16K bank num ber to the bot tom 3 bits of Mem ory Pag ing Con trol (7FFDh),
and the 4 MSBs to the bot tom 4 bits of Next Mem ory Bank Se lect (DFFDh). (The rea son for
the di vi sion is that the orig i nal Spec trum 128, hav ing only 128k of mem ory, only needed 3
bits.)

296 ZX Spectrum Next – User Manual

Chapter 24 – The Memory NextZXOS Paging Mechanism Overview

Figure 56 – Horizontal vs Vertical ROM switching

ROM0 ROM1

ROM2 ROM3

D4:7FFDh
(SysVar:BANKM)

Horizontal

Horizontal

h
D

F
F

1:
2

D
(

r
a

Vs
y

S
:

8
7

6
K

N
A

B
)

lacitreV

lacitreV

6 Not applicable on the ZX Spectrum Next

This in es sence con structs a “super hard ware port” of sorts, very sim i lar to the com bi na -
tion used to se lect a ROM us ing bits from 1FFDh and 7FFDh

D3/DFFDh D2/DFFDh D1/DFFDh D0/DFFDh D2/7FFDh D1/7FFDh D0/7FFDh Bank

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1

0 0 0 0 0 1 0 2

…

1 1 1 1 1 1 1 127

“Stan dard Next pag ing” bank se lec tion set tings

If you are us ing the stan dard in ter rupt han dler or NextZXOS rou tines, then any time you
write to the Mem ory Pag ing Con trol port (7FFDh) you should also store the value in
SysVars at lo ca tion 5B5Ch. Any time you write to the +3 Mem ory Pag ing Con trol (1FFDh)
you should also store the value at 5B67h. There is no cor re spond ing sys tem vari able for
the Next-only Next Mem ory Bank Se lect (DFFDh) port.

Note that in ter nally NextZXOS and NextBASIC uti lise a com bi na tion of all pos si ble bank ing
meth ods ac cord ing to what's needed at which time, and you should not rely on this in for -
ma tion as a de fin i tive guide on how the sys tem be haves at all times.

AllRam mode

“Spe cial pag ing mode” (also called AllRam mode or CP/M mode) is en abled by writ ing a
value with the LSB set to the +3 Mem ory Pag ing Con trol (1FFDh). De pend ing on the 3 low
bits of this value a mem ory con fig u ra tion is se lected as follows:

D2/1FFDh D1/1FFDh D0/1FFDh RAM Page com bi na tions (Slot1/.../Slot4)

0 0 1 0, 1, 2, 3

0 1 1 4, 5, 6, 7

1 0 1 4, 5, 6, 3

1 1 1 4, 7, 6, 3

AllRam pag ing

This mode is se lected by de fault when you se lect the CP/M Menu from the More…
submenu of the Startup menu, or you run the dot com mand .cpm.

MMU-Based Memory Management

MMU Based mem ory man age ment is much sim pler to use. It only re quires a write to the
ap pro pri ate MMU Next Reg is ter to change the 8K bank oc cu py ing a spe cific 8K slot in the
64K ad dress space (See the pre vi ous chap ter for de tails on Next Reg is ters). The MMU
reg is ters be gin with slot 0 in NextREG 80 (50h) and end with slot 7 in NextREG 87 (57h).
For MMU0 and MMU1 only, the ROM can be paged in by se lect ing 255 (FFh) as a bank
num ber. The de fault val ues for the MMU Reg is ters are listed in Chap ter 23 and cor re -
spond to the nor mal de fault mem ory mapping of the 128K Spectrums.

Layer 2 Bank Switching

Layer 2 can also be over laid on top of the MMU mem ory map in the bot tom 16K or 48K in a
Read-only or Write-only map ping. The Write-only map ping, for ex am ple, would mean that
mem ory writes to the bot tom 16K go to Layer 2 but mem ory reads come from the MMU
map ping as nor mal. The bot tom 16K is nor mally oc cu pied by the ROM so this Write-only
map ping would al low NextBASIC pro grams to con tinue to func tion (the ROM is a
read-only pro gram) while al low ing POKEs to write into the Layer 2 screen. It is an easy way
to gain ac cess to 32K in a sin gle 16K address range.

The Layer 2 map ping is con trolled by bits in the Layer 2 Ac cess Port 4667 (123Bh). These
bits se lect among 16K or 48K map ping, Read-only or Write-only, and whether the ac tive
Layer 2 screen is mapped or a sec ond Layer 2 buffer (Shadow Screen) is mapped. Layer 2

ZX Spectrum Next – User Manual 297

MMU-Based Memory Management Chapter 24 – The Memory

and its sec ond buffer can be lo cated any where in RAM and their start ing 16K banks are
pro grammed into NextREG 18 (12h) and 19 (13h) re spec tively.

The Layer 2 map ping does not have to be used for Layer 2 graphics only; it can be used as
a third bank ing mech a nism to ac cess mem ory more gen er ally.

Paging method interactions

The most re cent change to the mem ory map, whether that is by Stan dard or MMU meth -
ods, al ways ap plies. Each time a change is made to the mem ory map us ing the Stan dard
mech a nism (a write to port 7FFDh, DFFDh, or 1FFDh), the af fected MMUs are changed
im me di ately. For ex am ple writ ing to port 7FFDh will change MMU0 and MMU1 to FFh to
make sure the se lected ROM is vis i ble and MMU6 and MMU7 will be changed to re flect
the se lected 16K RAM bank.

Paging out the ROM

As seen above, the ROM can be paged out by en abling AllRam mode, or by us ing MMU
based mem ory man age ment. This may cause prob lems as some pro grams may as sume
that ROM-based ser vice rou tines are pres ent at fixed ad dresses in ROM. Ad di tion ally, if
the de fault in ter rupt mode (IM1) is set, the CPU will JP to 0038h ev ery frame try ing to find
an in ter rupt han dler rou tine. If it does not, (which it won't un less you write your own), the
system will crash.

298 ZX Spectrum Next – User Manual

Chapter 24 – The Memory Paging method interactions

The System Variables

*** This page intentionally left blank ***

The System Variables

Overview

Cer tain lo ca tions in mem ory are set aside for spe cific uses by the sys tem. There are a few
rou tines (used to keep the pag ing in or der), and some lo ca tions called sys tem vari ables
(or SYSVARS). You can use PEEK and DPEEK to read them, in or der to find out var i ous
things about the sys tem, and on some of them you can use fully change with POKE and
DPOKE. They are listed here with their uses.

The area oc cu pied by SYSVARS spans the ad dresses 23296 (5B00h) to 23733 (5CB5h)
(in clu sive) and a sub set of them are used in 48 BASIC – ad dresses 23552 (5C00h) to
23733 (5CB5h).

Note that in 48K mode, there is a buffer area be tween 23296 (5B00h) and 23552 (5C00h)
which was used for con trol ling the printer. This was quite a pop u lar lo ca tion for small ma -
chine code pro grams on the old 48K Spec trum, and if any of these rou tines are tried in
NextBASIC, the com puter will in vari ably crash so it's ad vis able that any 48K BASIC pro -
gram that uses PEEK, POKE and USR to ei ther be run in 48 BASIC mode (al though it can
be en tered in NextBASIC mode and trans ferred us ing the SPECTRUM com mand) or ex -
am ined thor oughly and con verted so it won't use any of these com mands or that any ma -
chine code rou tine em bed ded within it be moved in a safer area.

System Variables

The sys tem vari ables listed be low, all have unique names, but do not con fuse them with
NextBASIC vari ables. The com puter will not rec og nize the names as re fer ring to sys tem
vari ables, and they are given solely as mne mon ics to be hu man-read able.

The ab bre vi a tions in col umn 1 of the ta ble that fol lows have the fol low ing mean ings:

X The vari ables should not be poked be cause the sys tem might crash.
N Pok ing the vari able will have no last ing ef fect
R Rou tine en try point. Not a vari able.

The num ber in col umn 1 is the num ber of bytes in the vari able. For two bytes, the first one
is the less sig nif i cant byte; the re verse of what you might ex pect. So to POKE a value v to a
two byte vari able at ad dress n, use DPOKE in stead, as it does the con ver sion for you oth -
er wise you'd need to en ter the fol low ing for SYSVAR n value v:

POKE n,v-256*INT (v/256)
POKE n+1,INT (v/256)

and to peek its value, ei ther use DPEEK or the ex pres sion:

PEEK n+256*PEEK (n+1)

Ad dress

Notes Hex Dec Name De scrip tion

R16 5B00 23296 SWAP Paging subroutine.

R17 5B10 23312 STOO Paging subroutine. Entered with interrupts already disabled and AF,
BC on the stack.

R9 5B21 23329 YOUNGER Paging subroutine.

R16 5B2A 23338 REGNUOY Paging subroutine.

R24 5B3A 23354 ONERR Paging subroutine.

X2 5B52 23378 OLDHL Temporary register store while switching ROMs.

X2 5B54 23380 OLDBC Temporary register store while switching ROMs.

X2 5B56 23382 OLDAF Temporary register store while switching ROMs.

N2 5B58 23384 TARGET Subroutine address in ROM 3.

X2 5B5A 23386 RETADDR Return address in ROM 1.

ZX Spectrum Next – User Manual 301

Overview Chapter 25 – The System Variables

Ad dress

Notes Hex Dec Name De scrip tion

X1 5B5C 23388 BANKM Copy of last byte output to I/O port 7FFDh (32765). This port is used
to control the RAM paging (bits 0...2), the 'horizontal' ROM switch
(0 1 and 2 3 – bit 4), screen selection (bit 3) and added I/O disabling
(bit 5). This byte must be kept up to date with the last value output
to the port if interrupts are enabled.

X1 5B5D 23389 RAMRST RST 8 instruction. Used by ROM 1 to report old errors to ROM 3.

N1 5B5E 23390 RAMERR Error number passed from ROM 1 to ROM 3. Also used by
SAVE/LOAD as temporary drive store.

1 5B5F 23391 INKL INK colour for LoRes

1 5B60 23392 INK2 INK colour for Layer 2

1 5B61 23393 ATTRULA Attributes for standard mode

1 5B62 23394 ATTRHR Attributes for HiRes (only paper colour in bits 3 – 5 is used)

1 5B63 23395 ATTRHC Attributes for HiColour

1 5B64 23396 INKMASK Softcopy of EnhancedULA InkMask (or 0)

N1 5B65 23397 LSBANK Temporary bank number in LOAD/SAVE and other operations

1 5B66 23398 FLAGS3 Various flags. Bits 0, 1, 6 and 7 unlikely to be useful. Bit 2 is set
when tokens are to be expanded on printing. Bit 3 is set if print
output is RS232. The default (at reset) is Centronics. Bit 4 is set if a
disk interface is present. Bit 5 is set if drive B: is present.

X1 5B67 23399 BANK678 Copy of last byte output to I/O port 1FFDh (8189). This port is used
to control the +3 extended RAM and ROM switching (bits 0..2 – if
bit 0 is 0 then bit 2 controls the 'vertical' ROM switch 0 2 and 1 3), the
disk motor (bit 3) and Centronics strobe (bit 4). This byte must be
kept up to date with the last value output to the port if interrupts are
enabled.

X1 5B68 23400 FLAGN Flags for the NextZXOS system

1 5B69 23401 MAXBNK Maximum available RAM bank

X2 5B6A 23402 OLDSP Old SP (stack pointer) when TSTACK is in use.

X2 5B6C 23404 SYNRET Return address for ONERR.

5 5B6E 23406 LASTV Last value printed by calculator.

1 5B73 23411 TILEBNKL Tiles bank for LoRes

1 5B74 23412 TILEML Tilemap bank for LoRes

1 5B75 23413 TILEBNK2 Tiles bank for Layer2

1 5B76 23414 TILEM2 Tilemap bank for Layer2

X1 5B77 23415 NXTBNK Bank containing NXTLIN

X1 5B78 23416 DATABNK Bank containing DATADD

1 5B79 23417 LODDRV Holds 'T' if LOAD, VERIFY, MERGE are from tape, otherwise holds
'A', 'B' or 'M'.

1 5B7A 23418 SAVDRV Holds 'T' if SAVE is to tape, otherwise holds 'A', 'B' or 'M'.

N1 5B7B 23419 L2SOFT Softcopy of Layer 2 port

2 5B7C 23420 TILEWL Width of LoRes tilemap

2 5B7E 23422 TILEW2 Width of Layer 2 tilemap

2 5B80 23424 TILEOFFL Offset in bank for LoRes tilemap

2 5B82 23426 TILEOFF2 Offset in bank for Layer 2 tilemap

2 5B84 23428 COORDSX x coord of last point plotted (Layer 1/2)

2 5B86 23430 COORDSY y coord of last point plotted (Layer 1/2)

1 5B88 23432 PAPERL PAPER colour for LoRes mode

1 5B89 23433 PAPER2 PAPER colour for Layer 2 mode

Nx 5B8A 23434 TMPVARS Base of temporary system variables (space shared with bottom of
TSTACK)

302 ZX Spectrum Next – User Manual

Chapter 25 – The System Variables System Variables

Ad dress

Notes Hex Dec Name De scrip tion

X117 5BFF 23551 TSTACK Temporary stack grows down from here. Used when RAM bank 7 is
switched in at top of memory while executing the editor or calling
NextZXOS). it may safely go down to 5B8Ah if necessary . This
guarantees at least 117 bytes of stack when NextBASIC calls
NextZXOS.

N8 5C00 23552 KSTATE Used in reading the keyboard.

N1 5C08 23560 LASTK Stores newly pressed key.

1 5C09 23561 REPDEL Time (in 50ths of a second) that a key must be held down before it
repeats. This starts off at 35, but you can POKE in other values.

1 5C0A 23562 REPPER Delay (in 50ths of a second) between successive repeats of a key
held down – initially 5.

N2 5C0B 23563 DEFADD Address of arguments of user defined function (if one is being
evaluated), otherwise 0.

N1 5C0D 23565 K_DATA Stores 2nd byte of colour controls entered from keyboard .

N2 5C0E 23566 TVDATA Stores bytes of colour, AT and TAB controls going to TV.

X38 5C10 23568 STRMS Addresses of channels attached to streams.

2 5C36 23606 CHARS 256 less than address of character set (which starts with space and
carries on ©). Normally in ROM, but you can set up your down in
RAM and make CHARS point to it.

1 5C38 23608 RASP Length of warning buzz.

1 5C39 23609 PIP Length of keyboard click.

1 5C3A 23610 ERRNR 1 less than the report code. Starts off at 255 (for -1) so PEEK 23610
gives 255.

X1 5C3B 23611 FLAGS Various flags to control the NextBASIC system.

X1 5C3C 23612 TVFLAG Flags associated with the TV.

X2 5C3D 23613 ERRSP Address of item on machine stack to be used as error return.

N2 5C3F 23615 LISTSP Address of return address from automatic listing.

N1 5C41 23617 MODE Specifies K, L, C, E or G cursor.

2 5C42 23618 NEWPPC Line to be jumped to.

1 5C44 23620 NSPPC Statement number in line to be jumped to. Poking first NEWPPC
and then NSPPC forces a jump to a specified statement in a line.

2 5C45 23621 PPC Line number of statement currently being executed.

1 5C47 23623 SUBPPC Number within line of statement currently being executed.

1 5C48 23624 BORDCR Border colour multiplied by 8; also contains the attributes normally
used for the lower half of the screen.

2 5C49 23625 E_PPC Number of current line (with program cursor).

X2 5C4B 23627 VARS Address of variables.

N2 5C4D 23629 DEST Address of variable in assignment.

X2 5C4F 23631 CHANS Address of channel data.

X2 5C51 23633 CURCHL Address of information currently being used for input and output.

X2 5C53 23635 PROG Address of NextBASIC program.

X2 5C57 23637 NXTLIN Address of next line in program.

X2 5C57 23639 DATADD Address of terminator of last DATA item.

X2 5C59 23641 E_LINE Address of command being typed in.

2 5C5B 23643 K_CUR Address of cursor.

X2 5C5D 23645 CH_ADD Address of the next character to be interpreted – the character after
the argument of PEEK, or the NEWLINE at the end of a POKE
statement.

2 5C5F 23647 X_PTR Address of the character after the [] marker.

X2 5C61 23649 WORKSP Address of temporary work space.

X2 5C63 23651 STKBOT Address of bottom of calculator stack.

X2 5C65 23653 STKEND Address of start of spare space.

ZX Spectrum Next – User Manual 303

System Variables Chapter 25 – The System Variables

Ad dress

Notes Hex Dec Name De scrip tion

N1 5C67 23655 BREG Calculator's B register.

N2 5C68 23656 MEM Address of area used for calculator's memory (usually MEMBOT,
but not always).

1 5C6A 23658 FLAGS2 More flags. (Bit 3 set when CAPS SHIFT or CAPS LOCK is on.)

X1 5C6B 23659 DF_SZ The number of lines (including one blank line) in the lower part of
the screen.

2 5C6C 23660 S_TOP The number of the top program line in automatic listings.

2 5C6E 23662 OLDPPC Line number to which CONTINUE jumps.

1 5C70 23664 OSPPC Number within line of statement to which CONTINUE jumps.

N1 5C71 23665 FLAGX Various flags.

N2 5C72 23666 STRLEN Length of string type destination in assignment.

N2 5C74 23668 T_ADDR Address of next item in syntax table (very unlikely to be useful).

2 5C76 23670 SEED The seed for RND. This is the variable that is set by RANDOMIZE.

3 5C78 23672 FRAMES 3 byte (least significant byte first), frame counter incremented every
20ms.

2 5C7B 23675 UDG Address of first user-defined graphic. You can change this, for
instance, to save space by having fewer user-defined characters.

1 5C7D 23677 COORDS X-coordinate of last point plotted.

1 5C7E 23678 Y-coordinate of last point plotted.

X1 5C7F 23679 GMODE Graphical layer/mode flags

X2 5C80 23680 PRCC Full address of next position for LPRINT to print at (in ZX Printer
buffer). Legal values 5B00 – 5B1F1.

1 5C81 23681 STIMEOUT Screensaver control

2 5C82 23682 ECHO_E 33-column number and 24 line number (in lower half) of end of input
buffer.

2 5C84 23684 DF_CC Address in display file of PRINT position.

2 5C86 23686 DF_CCL Like DF CC for lower part of screen.

X1 5C88 23688 S_POSN 33-column number for PRINT position.

X1 5C89 23689 24-line number for PRINT position.

X2 5C8A 23690 SPOSNL Like S_POSN for lower part.

1 5C8C 23692 SCR_CT Counts scrolls – it is always 1 more than the number of scrolls that
will be done before stopping with scroll?. If you keep poking this
with a number bigger than 1 (say 255), the screen will scroll on and
on without asking you.

1 5C8D 23693 ATTR_P Permanent current colours, etc., (as set up by colour statements).

1 5C8E 23694 MASK_P Used for transparent colours, etc. Any bit that is 1 shows that the
corresponding attribute bit is taken not from ATTR_P, but from what
is already on the screen.

N1 5C8F 23695 ATTR_T Temporary current colours, etc., (as set up by colour items).

N1 5C90 23696 MASK_T Like MASK_P, but temporary.

1 5C91 23697 P_FLAG More flags.

N30 5C92 23698 MEMBOT Calculator's memory area – used to store numbers that cannot
conveniently be put on the calculator stack.

2 5CB0 23728 Unused

2 5CB2 23730 RAMTOP Address of last byte of NextBASIC system area.

2 5CB4 23732 P_RAMT Address of last byte of physical RAM.

304 ZX Spectrum Next – User Manual

Chapter 25 – The System Variables System Variables

1 Not used in 128K mode or when certain peripherals are attached

Using Machine Code

*** This page intentionally left blank ***

Using Machine Code

Using Machine Code

Com put ers do not re spond di rectly to BASIC, or any other higher level pro gram ming lan -
guage. In stead, such lan guages are ei ther in ter preted or com piled into what is known as
ma chine code, and it is this which is un der stood by the CPU. The kind of pro ces sor that is
built into the com puter de ter mines the type of ma chine code that is used. The ZX Spec -
trum range con tains a Z80 pro ces sor, and so one writes Z80 ma chine code when ad -
dress ing the pro ces sor di rectly. Spe cif i cally for the ZX Spec trum Next, the CPU is an
up dated one called Z80n which con tains a superset of the in struc tions found in the Z80.
This sec tion is writ ten mainly for those who un der stand Z80 ma chine code. If you do not,
but would like to, you might choose to read a book about it. Suit able ti tles will be some -
thing along the lines of Z80 ma chine code (or as sem bly lan guage) for the ab so lute be gin -
ner. If it also men tions one of the com put ers in the ZX Spec trum range, so much the better.
You might also like to read on line re sources and find tools such as the De sign-De sign
Zeus cross as sem bler at: https://www.desdes.com/prod ucts/oldfiles/, or the z88dk
suite which in cludes apart from a C com piler, also an as sem bler, at www.z88dk.org, and
last but not least the specnext.com forums.

Rather than write the nu mer i cal val ues of a ma chine code pro gram di rectly, peo ple usu ally
choose to use mne mon ics, known as as sem bly lan guage, which, al though cryp tic, is not
too dif fi cult to un der stand with prac tice. You can see the as sem bly lan guage in struc tions
un der stood by the ZX Spec trum Next's CPU in Ap pen dix A.

For a com puter to ex e cute this code the pro gram must be con verted into a se quence of
bytes – in this form it is called ma chine code. This trans la tion is usu ally done by a com -
puter, us ing a pro gram called an as sem bler. There is no as sem bler built into the ZX Spec -
trum Next ROM, how ever, two, load able ones are in cluded in the Sys tem/Next™
dis tri bu tion: Zeus and SPED kindly pro vided by Neil Mottershead and Si mon Brattel for
the for mer and César Hernández Bañó for the lat ter re spec tively. It is also pos si ble do the
trans la tion your self, but this can be a painstaking process.

Let's take as an ex am ple the pro gram:

ld bc, 99
ret

This will load the BC reg is ter pair with 99 and then re turn. This trans lates into the four ma -
chine code bytes 1, 99, 0 (ld bc, 99) and 201 (ret). (If you look up codes 1 and 201 in Ap -
pen dix A, you will find that 1 cor re sponds to ld bc, NN – where NN stands for any two-byte
num ber; and 201 cor re sponds to ret.)

Using CLEAR to Make Space

Once you have writ ten your ma chine code pro gram, the next step is to load it into the com -
puter’s mem ory. You need to de cide where abouts in mem ory to lo cate it – the best thing is
to make ex tra space for it be tween the NextBASIC area and the user-de fined graphics.

If you en ter the com mand:

CLEAR 65267

This will give you a space of 100 (for good mea sure) bytes start ing at ad dress 65268.To
cre ate the ma chine code pro gram, you may run a NextBASIC pro gram like this:

10 LET a=65268

20 READ n: POKE a,n

30 LET a=a+1: GO TO 20

40 DATA 1,99,0,201

ZX Spectrum Next – User Manual 307

Using Machine Code Chapter 26 – Using Machine Code

This will stop with the re port E Out of DATA when it has filled in the four bytes you spec i -
fied.

Using USR to run machine code

To run the ma chine code, you use the func tion USR or its –pre ferred– BANK com mand
vari ant. This time how ever you need to pro vide it with a nu meric ar gu ment, i.e. the start ing
ad dress or the bank off set. Its re sult is the value of the BC reg is ter on re turn from the ma -
chine code pro gram, so as sum ing you type:

PRINT USR 65268

It will re turn the value 99.

The re turn ad dress to NextBASIC is stacked in the usual way, so re turn is by a Z80 ret in -
struc tion. You should not use the IY and I reg is ters in a ma chine code rou tine that ex pects
to use the NextBASIC in ter rupt mech a nism. To per form the ex act same func tion by us ing
the BANK vari ant, make the fol low ing changes to our program:

10 LET %a=0

20 BANK NEW %b

30 READ %n : BANK %b POKE %a,%n

40 LET %a=%a+1: GO TO 30

50 DATA 1,99,0,201

RUN it and you'll see the E Out of Data er ror again; Now it's time to ex e cute it and it's done
by giv ing:

PRINT % BANK b USR 0

If you are writ ing a pro gram to run with the 48K or 128K ROM, you should not load I with
val ues be tween 40h and 7Fh (even if you never use IM 2). When us ing one of the 128K
ROMs, val ues be tween C0h and FFh for I should also be avoided if you plan on en abling
con ten tion for your tar get ma chine / per son al ity and con tended mem ory (i.e. RAM 4 to 7)
is to be paged in be tween C000h and FFFFh. This is due to an in ter ac tion be tween the
ULA and the Z80 re fresh mech a nism, which can cause ap par ently in ex pli ca ble crashes,
screen cor rup tion or other un de sir able ef fects. Thus, you should only use vec tor IM 2 in ter -
rupts be tween 8000h and BFFFh un less you are very con fi dent of your mem ory map ping
(or you are only go ing to run your pro gram on the +2A, +3e or Next per son al i ties where
this problem does not exist).

There are a num ber of stan dard pit falls when pro gram ming a banked sys tem such as the
ZX Spec trum Next from ma chine code. If you are ex pe ri enc ing prob lems, check that your
stack is not be ing paged out dur ing in ter rupts, and that your in ter rupt rou tine is al ways
where you ex pect it to be (it is ad vis able to dis able in ter rupts dur ing pag ing op er a tions). It
is also rec om mended that you keep a copy of the cur rent bank reg is ter set ting in unpaged
RAM some where as the ports are write-only. NextBASIC and the ed i tor use the sys tem
vari ables BANKM and BANK678 for 7FFDh and 1FFDh respectively.

If you call NextZXOS rou tines, re mem ber that in ter rupts should be en abled upon en try to
the rou tines. Re mem ber also that the stack must be be low 49120 (BFE0h) and above
16384 (4000h), and that there must be at least 50 words of stack space avail able.

You can save your ma chine code pro gram eas ily enough with, for ex am ple:

SAVE "name" CODE 65268,4

or, in case you used the BANK vari ant

SAVE "name" BANK %b, 0, 4

308 ZX Spectrum Next – User Manual

Chapter 26 – Using Machine Code Using USR to run machine code

There is no way of sav ing the pro gram such that when loaded it au to mat i cally runs it self;
how ever, you can get round this by us ing the short NextBASIC pro gram:

10 LOAD "name" CODE 65268,4

20 PRINT USR 65268

Which should also be saved as a sep a rate pro gram, us ing a com mand of the fol low ing
form:

SAVE "loader" LINE 10

You may run the ma chine code from NextBASIC us ing the sin gle com mand:

LOAD "loader"

This then loads and au to mat i cally runs the NextBASIC pro gram, which in turn loads and
runs the ma chine code. You can try and make a ver sion with the BANK vari ant as well as
that's safer and al ways pre ferred.

Calling NextZXOS from NextBASIC

When NextBASIC's USR func tion is used, the code it ref er ences is en tered with the mem -
ory con fig ured with the ROM switched in at the bot tom of mem ory in the ad dress range
(000h – 3FFFh) be ing ROM 3 (the 48 BASIC ROM). The RAM page at the top of mem ory is
Bank 0 and the ma chine stack re sides in this area (un less the CLEAR com mand has been
used to re duce it to some where be low C000h). As ex plained in the ac com pa ny ing doc u -
ments ex plain ing the NextZXOS API (found in the c:/docs/nextzxos/ folder in your Sys -
tem/Next™ dis tri bu tion), NextZXOS can only be called with RAM page 7 switched in at the
top of mem ory, the stack held some where in that range 4000h to BFE0h, and ROM 2 (the
NextZXOS ROM) switched in at the bot tom of mem ory (000h to 3FFFh).

Con se quently, it will be nec es sary to switch both ROM and RAM, and move the stack be -
fore and af ter call ing one of the en tries in the DOS jump table.

If the CLEAR com mand has been used so that the NextBASIC stack is be low 49120
(BFE0h), then it is not nec es sary to move the stack. How ever, we have done so in the fol -
low ing ex am ple to dem on strate the tech nique when this is not the case.

A sim ple ex am ple to call DOS CATALOG:

org 7000h

mystak equ 9FFFh ;ar bi trary value picked to be be low
;BFE0h and above 4000h

staksto equ 9000h ;some where to put BA SIC's stack
;pointer

bankm equ 5B5Ch ;sys tem vari able that holds the
;last value out put to 7FFDh

port1 equ 7FFDh ;ad dress of ROM/RAM switch ing port
;in I/O map

catbuff equ 8000h ;some where for DOS to put its cata
;log

dos_cat a log equ 011Eh ;the DOS rou tine to call

demo: di ;un wise to switch RAM/ROM with out
;dis abling in ter rupts

ld (staksto),sp ;save BA SIC's stack pointer
ld bc,port1 ;the hor i zon tal ROM switch/RAM

;switch I/O ad dress
ld a,(bankm) ;sys tem vari able that holds cur rent

;switch state
res 4,a ;move right to left in hor i zon tal

;ROM switch (3 to 2)

ZX Spectrum Next – User Manual 309

Calling NextZXOS from NextBASIC Chapter 26 – Using Machine Code

or 7 ;switch in RAM page 7
ld (bankm),a ;must keep sys tem vari able up to

;date (very im por tant)
out (c),a ;make the switch
ld sp,mystak ;make sure stack is above 4000h and

;be low BFE0h
ei ;in ter rupts can now be en abled

;
;The above will have switched in
;the DOS ROM and RAM page 7. The
;stack has also been lo cated in a
;"safe" po si tion for call ing DOS
;
;The fol low ing is the code to set
;up and call DOS CATALOG. This is
;where yourown code would be
;placed.
;

ld hl,catbuff ;some where for DOS to put the cata
;log

ld de,catbuff+1 ;
ld bc,1024 ;max i mum (for +3DOS) is ac tu ally

;64x13+13 = 845
ld (hl),0
ldir ;make sure at least first en try is

;ze roed
ld b,64 ;the num ber of en tries in the

;buffer
ld c,1 ;in clude sys tem files in the cata

;log
ld de,catbuff ;the lo ca tion to be filled with the

;disk cat a log
ld hl,stardstar ;the file name ("*.*")
call dos_cat a log ;call the DOS en try
push af ;save flags and pos si ble er ror num

;ber re turned by DOS
pop hl
ld (dosret),hl ;put it where it can be seen from

; NextBASIC
ld c,b ;move num ber of files in cat a log to

;low byte of BC
ld b,0 ;this will be re turned in NextBASIC

;by the USR func tion
;
;If the above worked, then BC holds
;num ber of files in cat a log, the
;"catbuff"
;will be filled with the al pha-
;nu mer i cally sorted cat a log and the
;carry flag but
;in "dosret" will be set. This will
;be peeked from NextBASIC to check
;if all went well.
;
;Hav ing made the call to DOS, it is
;now nec es sary to undo the ROM and
;RAM switch and put BA SIC's stack
;back to where it was on en try.
;The fol low ing will achieve this.

di ;about to ROM/RAM switch so be
;care ful

push bc ;save num ber of files
ld bc,port1 ;I/O ad dress of hor i zon tal ROM/RAM

;switch
ld a,(bankm) ;get cur rent switch state

310 ZX Spectrum Next – User Manual

Chapter 26 – Using Machine Code Calling NextZXOS from NextBASIC

set 4,a ;move left to right (ROM 2 to ROM
;3)

and F8h ;also want RAM page 0
ld (bankm),a ;up date the sys tem vari able (very

;im por tant)
out (c),a ;make the switch
pop bc ;get back the saved num ber of files

;in cat a log
ld sp,(staksto) ;put NextBASIC's stack back
ret ;re turn to NextBASIC, value in BC

;is re turned to USR
stardstar:

defb "*.*",FFh ;the file name, must be ter mi nated
;with FFh

dosret:
defw 0 ;a vari able to be peeked from BASIC

;to see if it worked

As some of you may not have an as sem bler avail able, the fol low ing is a NextBASIC pro -
gram that pokes the above code into mem ory, calls it, and then uses the value re turned by
the USR func tion and the con tents of dosret to print a very sim ple cat a log of the disk:

10 LET sum=0

20 FOR i=28672 TO 28758

30 READ n

40 POKE i,n : LET sum=sum+n

50 NEXT i

60 IF sum <> 9387 THEN PRINT

"Error in DATA" : STOP

70 LET x= USR 28672

80 IF INT (PEEK (28757)/2)=

PEEK (28757)/2 THEN PRINT

"Disk Error ";PEEK (28758):

STOP

90 IF x=1 THEN PRINT "No file

found": STOP

100 FOR i=0 TO x-2

110 FOR j=0 TO 10

120 PRINT CHR$ (PEEK

(32781+i*13+j));

130 NEXT j

140 PRINT

150 NEXT i

160 DATA 243,237,115,0,144,1,

253,127,58,92,91,203,167,24

6,7,50,92,91,237,121,49,255

,159,251

170 DATA 33,0,128,17,1,128,1,

0,4,54,0,237,176,6,64,14,1,

17,0,128,33,81,112,205,30,1

,245,225,34,85,112,72,6,0

180 DATA 243,197,1,253,127,58,

92,91,203,231,230,248,50,92

,91,237,121,193,237,123,0,

144,201

190 DATA 42,46,42,255,0,0

ZX Spectrum Next – User Manual 311

Calling NextZXOS from NextBASIC Chapter 26 – Using Machine Code

The ad dresses picked for the above code and its data ar eas are com pletely ar bi trary.
How ever, it is a good idea to keep things in the cen tral 32K wher ever pos si ble so as not to
run into the pit fall of ac ci den tally switch ing out a vi tal vari able or piece of code.

If in ter rupts are to be en abled (as is the case in the above ex am ple), it is im per a tive that the
sys tem is kept up to date about the lat est ROM switch. This means, that the user must
make the BANK678 sys tem vari able re flect the last value out put to the port at 1FFDh. As
shown by the above ex am ple, the gen eral tech nique is to take a copy of the vari able in A,
set/re set the rel e vant bits, up date the sys tem vari able then make the switch with an OUT
in struc tion. In ter rupts must be dis abled while the sys tem vari able does not re flect the cur -
rent state of the port. The port at 1FFDh does n't just con trol the ROM switch, so set ting the
vari able to ab so lute val ues would be very un wise. Us ing AND/OR with a bit mask or
SET/RES in struc tions is the preferred method of updating the variable.

Just as BANK678 re flects the last value out put to 1FFDh, BANKM should also be kept up
to date with the last value out put to 7FFDh. Again, it is un wise to use ab so lute val ues, as
the port is used for other pur poses. For ex am ple, the bot tom 3 bits of the port are used to
se lect the RAM page that is switched into the mem ory area C000h through FFFFh (this is
also shown in the above ex am ple). Nat u rally, when more than one bit is to be set/re set, a
bit mask used with OR/AND is the more ef fi cient method. Note that RAM pag ing was de -
scribed in the Mem ory Man age ment sec tion in Chap ter 24.

The above was a very sim ple ex am ple of call ing DOS rou tines. It works – apart from the ZX
Spec trum Next – on the ZX Spec trum +3 and ZX Spec trum +3e as well.

Opcodes Prefixes

Some As sem bler opcodes are pre ceded by a pre fix byte which changes the opcode rep -
re sented by the fol low ing byte.

As sem bler opcode pre fixes CBh (203) and EDh (237) al ter the mean ing of cer tain in struc -
tions, as in di cated in the 5th and 6th col umns of Ap pen dix A. This in cludes the pro vi sion of
some en tirely new opcodes for the ZX Spectrum Next.

As sem bler opcode pre fixes DDh (221) and FDh (253) al ter the mean ing of cer tain in struc -
tions that or di narily re fer to the H or L reg is ters, so that they re fer to ei ther the com po nent
reg is ters of IX or IY reg is ter re spec tively. For ex am ple, the in struc tion LD H,n will load the
value of n into the H reg is ter. Pre ced ing this two-byte in struc tion with the IX reg is ter's
opcode pre fix DDh, would re sult in the most sig nif i cant 8 bits of the IX reg is ter being
loaded with that value instead.

This gen eral trans for ma tion rule is mod i fied when the orig i nal in struc tion con tains (HL),
with this com po nent re placed by (IX +N) and any other ref er ence to HL left un af fected.
For instance:

DDh 66h is in ter preted as ld h,(ix + N)

A DDh opcode will be ig nored, in ter preted as nop, if it pre cedes DDh, EDh or FDh. Sim i lar
rules ap ply to the FDh in struc tion.

312 ZX Spectrum Next – User Manual

Chapter 26 – Using Machine Code Opcodes Prefixes

Character Set,
Z80N Mnemonics

and Control Codes

This Page Intentionally Left Blank

Character Set, Z80N Mnemonics and Control Codes

This is the com plete ZX Spec trum Next / NextZXOS char ac ter set, with codes in dec i mal
and hex a dec i mal, the char ac ter each code rep re sents, as well as the con trol codes
(shaded) to gether with their cor re spond ing NextBASIC to kens, if any. To kens that are
shaded are spe cific to the ZX Spec trum Next and can not be found in ear lier ZX Spec trum
mod els. If one imag ines the codes as be ing Z80N ma chine code in struc tions, then the
right hand col umns give the cor re spond ing as sem bly lan guage mne mon ics. As you are
prob a bly aware if you un der stand these things, cer tain Z80N in struc tions are com pounds
start ing with CBh or EDh; the two rightmost col umns give you these. Note that ED in struc -
tions that are shaded, can not be found in reg u lar Z80 CPUs and are only na tive to Z80N,
the vari ant of the Z80 CPU, found on the ZX Spec trum Next. Con trol codes are marked
with UW if they re fer to User Win dows and SW if they refer to System Windows.

Dec Char ac ter / Con trol Code / To ken Hex Z80N As sem bler - af ter CB - af ter ED

0 Justify off (UW) Increase font (SW) 00 nop rlc b

1 Justify on (UW) Decrease font (SW) 01 ld bc,NN rlc c

2 Save Window (UW) Change font (SW) 02 ld (bc),a rlc d

3 Restore Window (UW)
Regenerate Small Fonts (SW)

03 inc bc rlc e

4 Cursor to top left (UW)(SW) 04 inc b rlc h

5 Cursor to bottom left (UW)(SW) 05 dec b rlc l

6 PRINT comma 06 ld b,N rlc (hl)

7 EDIT, Scroll (SW)(UW) 07 rlca rlc a

8 ï 08 ex af,af' rrc b

9 ð 09 add hl,bc rrc c

10 ò 0A ld a,(bc) rrc d

11 ñ 0B dec bc rrc e

12 DELETE / Backspace 0C inc c rrc h

13 ENTER / Carriage Return
PRINT apostrophe

0D dec c rrc l

14 Clear Window (UW)(SW) 0E ld c,N rrc (hl)

15 Wash Window (UW)(SW) 0F rrca rrc a

16 INK 10 djnz DIS rl b

17 PAPER 11 ld de,NN rl c

18 FLASH 12 ld (de),a rl d

19 BRIGHT 13 inc de rl e

20 INVERSE 14 inc d rl h

21 OVER 15 dec d rl l

22 AT 16 ld d,N rl (hl)

23 TAB 17 rla rl a

24 ATTR (UW)(SW) 18 jr DIS rr b

25 POINT (UW)(SW) 19 add hl,de rr c

26 AUTO PAUSE (UW)(SW) 1A ld a,(de) rr d

27 Fill window with character(UW)(SW) 1B dec de rr e

28 Set Double Width (UW)(SW) 1C inc e rr h

29 Set Font Height (UW) 1D dec e rr l

30 Justification mode (UW)
Set Font Width (SW)

1E ld e,N rr (hl)

31 Permit embed. codes in justif. mode
(UW)
Redefine Character Set (SW)

1F rra rr a

32 Space 20 jr nz, DlS sla b

33 ! 21 ld hl,NN sla c

34 " 22 ld (NN),hl sla d

ZX Spectrum Next – User Manual 315

Appendix A – Character Set, Z80N Mnemonics and Control Codes

Dec Char ac ter / Con trol Code / To ken Hex Z80N As sem bler - af ter CB - af ter ED

35 # 23 inc hl sla e swapnib

36 $ 24 inc h sla h mirror a

37 % 25 dec h sla l

38 & 26 ld h,N sla (hl)

39 ‘ 27 daa sla a test N

40 (28 jr z,DlS sra b bsla de,b

41) 29 add hl,hl sra c bsra de,b

42 * 2A ld hl,(NN) sra d bsrl de,b

43 + 2B dec hl sra e bsrf de,b

44 , 2C inc l sra h brlc de,b

45 - 2D dec l sra l

46 . 2E ld l,N sra (hl)

47 / 2F cpl sra a

48 0 30 jr nc,DlS mul d,e

49 1 31 ld sp,NN add hl,a

50 2 32 ld (NN),a add de,a

51 3 33 inc sp add bc,a

52 4 34 inc (hl) add hl,NN

53 5 35 dec (hl) add de,NN

54 6 36 ld (hl),N add bc,NN

55 7 37 scf

56 8 38 jr c,DlS srl b

57 9 39 add hl,sp srl c

58 : 3A ld a,(NN) srl d

59 ; 3B dec sp srl e

60 < 3C inc a srl h

61 = 3D dec a srl l

62 > 3E ld a,N srl (hl)

63 ? 3F ccf srl a

64 @ 40 ld b,b bit 0,b in b,(c)

65 A 41 ld b,c bit 0,c out (c),b

66 B 42 ld b,d bit 0,d sbc hl,bc

67 C 43 ld b,e bit 0,e ld (NN),bc

68 D 44 ld b,h bit 0,h neg

69 E 45 ld b,l bit 0,l retn

70 F 46 ld b,(hl) bit 0,(hl) im 0

71 G 47 ld b,a bit 0,a ld i,a

72 H 48 ld c,b bit 1,b in c,(c)

73 I 49 ld c,c bit 1,c out (c),c

74 J 4A ld c,d bit 1,d adc hl,bc

75 K 4B ld c,e bit 1,e ld bc,(NN)

76 L 4C ld c,h bit 1,h

77 M 4D ld c,l bit 1,l reti

78 N 4E ld c,(hl) bit 1,(hl)

79 O 4F ld c,a bit 1,a ld r,a

80 P 50 ld d,b bit 2,b in d,(c)

81 Q 51 ld d,c bit 2,c out (c),d

82 R 52 ld d,d bit 2,d sbc hl,de

83 S 53 ld d,e bit 2,e ld (NN),de

84 T 54 ld d,h bit 2,h

85 U 55 ld d,l bit 2,l

86 V 56 ld d,(hl) bit 2,(hl) im 1

316 ZX Spectrum Next – User Manual

Appendix A – Character Set, Z80N Mnemonics and Control Codes

Dec Char ac ter / Con trol Code / To ken Hex Z80N As sem bler - af ter CB - af ter ED

87 W 57 ld d,a bit 2,a ld a,i

88 X 58 ld e,b bit 3,b in e,(c)

89 Y 59 ld e,c bit 3,c out (c),e

90 Z 5A ld e,d bit 3,d adc hl,de

91 [5B ld e,e bit 3,e ld de,(NN)

92 \ 5C ld e,h bit 3,h

93] 5D ld e,l bit 3,l

94 5E ld e,(hl) bit 3,(hl) im 2

95 _ 5F ld e,a bit 3,a ld a,r

96 £ 60 ld h,b bit 4,b in h,(c)

97 a 61 ld h,c bit 4,c out (c),h

98 b 62 ld h,d bit 4,d sbc hl,hl

99 c 63 ld h,e bit 4,e ld (NN),hl

100 d 64 ld h,h bit 4,h

101 e 65 ld h,l bit 4,l

102 f 66 ld h,(hl) bit 4,(hl)

103 g 67 ld h,a bit 4,a rrd

104 h 68 ld l,b bit 5,b in l,(c)

105 i 69 ld l,c bit 5,c out (c),l

106 j 6A ld l,d bit 5,d adc hl,hl

107 k 6B ld l,e bit 5,e ld hl,(NN)

108 l 6C ld l,h bit 5,h

109 m 6D ld l,l bit 5,l

110 n 6E ld l,(hl) bit 5,(hl)

111 o 6F ld l,a bit 5,a rld

112 p 70 ld (hl),b bit 6,b in f,(c)

113 q 71 ld (hl),c bit 6,c

114 r 72 ld (hl),d bit 6,d sbc hl,sp

115 s 73 ld (hl),e bit 6,e ld (NN),sp

116 t 74 ld (hl),h bit 6,h

117 u 75 ld (hl),l bit 6,l

118 v 76 halt bit 6,(hl)

119 w 77 ld (hl),a bit 6,a

120 x 78 ld a,b bit 7,b in a,(c)

121 y 79 ld a,c bit 7,c out (c),a

122 z 7A ld a,d bit 7,d adc hl,sp

123 { 7B ld a,e bit 7,e ld sp,(NN)

124 | 7C ld a,h bit 7,h

125 } 7D ld a,l bit 7,l

126 ~ 7E ld a,(hl) bit 7,(hl)

127 © 7F ld a,a bit 7,a

128 80 add a,b res 0,b

129 Á 81 add a,c res 0,c

130 Â 82 add a,d res 0,d

131 Ã 83 add a,e res 0,e

132 Ä 84 add a,h res 0,h

133 Å 85 add a,l res 0,l

134 Æ 86 add a,(hl) res 0,(hl)

135 Ç PEEK$ 87 add a,a res 0,a

136 È REG 88 adc a,b res 1,b

137 É DPOKE 89 adc a,c res 1,c

ZX Spectrum Next – User Manual 317

Appendix A – Character Set, Z80N Mnemonics and Control Codes

Dec Char ac ter / Con trol Code / To ken Hex Z80N As sem bler - af ter CB - af ter ED

138 Ê DPEEK 8A adc a,d res 1,d push NN

139 Ë MOD 8B adc a,e res 1,e

140 Ì << 8C adc a,h res 1,h

141 Í >> 8D adc a,l res 1,l

142 Î UNTIL 8E adc a,(hl) res 1,(hl)

143 Ï ERROR 8F adc a,a res 1,a

144 (a) ON 90 sub b res 2,b outinb

145 (b) DEFPROC 91 sub c res 2,c nextreg r,N

146 (c) ENDPROC 92 sub d res 2,d nextreg r,a

147 (d) PROC 93 sub e res 2,e pixeldn

148 (e) LOCAL 94 sub h res 2,h pixelad

149 (f) DRIVER 95 sub l res 2,l setae

150 (g) WHILE 96 sub (hl) res 2,(hl)

151 (h) REPEAT 97 sub a res 2,a

152 (i) ELSE 98 sbc a,b res 3,b jp (c)

153 (j) REMOUNT 99 sbc a,c res 3,c

154 (k) BANK 9A sbc a,d res 3,d

155 (l) TILE 9B sbc a,e res 3,e

156 (m) LAYER 9C sbc a,h res 3,h

157 (n) PALETTE 9D sbc a,l res 3,l

158 (o) SPRITE 9E sbc a,(hl) res 3,(hl)

159 (p) PWD 9F sbc a,a res 3,a

160 (q) CD A0 and b res 4,b ldi

161 (r) MKDIR A1 and c res 4,c cpi

162 (s) RMDIR A2 and d res 4,d ini

163 (t) SPECTRUM A3 and e res 4,e outi

164 (u) PLAY A4 and h res 4,h ldix

165 RND A5 and l res 4,l ldws

166 INKEY$ A6 and (hl) res 4,(hl)

167 PI A7 and a res 4,a

168 FN A8 xor b res 5,b ldd

169 POINT A9 xor c res 5,c cpd

170 SCREEN$ AA xor d res 5,d ind

171 ATTR AB xor e res 5,e outd

172 AT AC xor h res 5,h lddx

173 TAB AD xor l res 5,l

174 VAL$ AE xor (hl) res 5,(hl)

175 CODE AF xor a res 5,a

176 VAL B0 or b res 6,b ldir

177 LEN B1 or c res 6,c cpir

178 SIN B2 or d res 6,d inir

179 COS B3 or e res 6,e otir

180 TAN B4 or h res 6,h ldirx

181 ASN B5 or l res 6,l

182 ACS B6 or (hl) res 6,(hl)

183 ATN B7 or a res 6,a ldpirx

184 LN B8 cp b res 7,b lddr

185 EXP B9 cp c res 7,c cpdr

186 INT BA cp d res 7,d indr

187 SQR BB cp e res 7,e otdr

188 SGN BC cp h res 7,h lddrx

318 ZX Spectrum Next – User Manual

Appendix A – Character Set, Z80N Mnemonics and Control Codes

Dec Char ac ter / Con trol Code / To ken Hex Z80N As sem bler - af ter CB - af ter ED

189 ABS BD cp l res 7,l

190 PEEK BE cp (hl) res 7,(hl)

191 IN BF cp a res 7,a

192 USR C0 ret nz set 0,b

193 STR$ C1 pop bc set 0,c

194 CHR$ C2 jp nz,NN set 0,d

195 NOT C3 jp NN set 0,e

196 BIN C4 call nz,NN set 0,h

197 OR C5 push bc set 0,l

198 AND C6 add a,N set 0,(hl)

199 <= C7 rst 0 set 0,a

200 >= C8 ret z set 1,b

201 <> C9 ret set 1,c

202 LINE CA jp z,NN set 1,d

203 THEN CB modifying prefix set 1,e

204 TO CC call z,NN set 1,h

205 STEP CD call NN set 1,l

206 DEF FN CE adc a,N set 1,(hl)

207 CAT CF rst 8 set 1,a

208 FORMAT D0 ret nc set 2,b

209 MOVE D1 pop de set 2,c

210 ERASE D2 jp nc,NN set 2,d

211 OPEN # D3 out (N),a set 2,e

212 CLOSE # D4 call nc,NN set 2,h

213 MERGE D5 push de set 2,l

214 VERIFY D6 sub N set 2,(hl)

215 BEEP D7 rst 16 set 2,a

216 CIRCLE D8 ret c set 3,b

217 INK D9 exx set 3,c

218 PAPER DA jp c,NN set 3,d

219 FLASH DB in a,(N) set 3,e

220 BRIGHT DC call c,NN set 3,h

221 INVERSE DD IX prefix* set 3,l

222 OVER DE sbc a,N set 3,(hl)

223 OUT DF rst 24 set 3,a

224 LPRINT E0 ret po set 4,b

225 LLIST E1 pop hl set 4,c

226 STOP E2 jp po,NN set 4,d

227 READ E3 ex (sp),hl set 4,e

228 DATA E4 call po,NN set 4,h

229 RESTORE E5 push hl set 4,l

230 NEW E6 and N set 4,(hl)

231 BORDER E7 rst 32 set 4,a

232 CONTINUE E8 ret pe set 5,b

233 DIM E9 jp (hl) set 5,c

234 REM / ; EA jp pe,NN set 5,d

235 FOR EB ex de,hl set 5,e

236 GO TO EC call pe,NN set 5,h

237 GO SUB ED modifying prefix set 5,l

238 INPUT EE xor N set 5,(hl)

239 LOAD EF rst 40 set 5,a

240 LIST F0 ret p set 6,b

ZX Spectrum Next – User Manual 319

Appendix A – Character Set, Z80N Mnemonics and Control Codes

Dec Char ac ter / Con trol Code / To ken Hex Z80N As sem bler - af ter CB - af ter ED

241 LET F1 pop af set 6,c

242 PAUSE F2 jp p,NN set 6,d

243 NEXT F3 di set 6,e

244 POKE F4 call p,NN set 6,h

245 PRINT F5 push af set 6,l

246 PLOT F6 or N set 6,(hl)

247 RUN F7 rst 48 set 6,a

248 SAVE F8 ret m set 7,b

249 RANDOMIZE F9 ld sp,hl set 7,c

250 IF FA jp m,NN set 7,d

251 CLS FB ei set 7,e

252 DRAW FC call m,NN set 7,h

253 CLEAR FD IY prefix* set 7,l

254 RETURN FE cp N set 7,(hl)

255 COPY FF rst 56 set 7,a

320 ZX Spectrum Next – User Manual

Appendix A – Character Set, Z80N Mnemonics and Control Codes

Reference

Reference

The fol low ing sec tions pro vide a handy ref er ence of Er ror Codes and their equiv a lent Re -
ports, NextBASIC keywords and func tions as well as other in for ma tion dis cussed so far in
a consice form

Reports and Error Codes

These ap pear at the bot tom of the screen when ever the com puter stops ex e cut ing some
func tion, and ex plain why it stopped, whether for a nat u ral rea son, or be cause an er ror
occurred.

The re port has a brief mes sage ex plain ing what hap pened and the bank num ber (not
pres ent un less the er ror oc curred in a banked sec tion of pro gram), the line num ber and
state ment num ber within the line where it stopped (A com mand is shown as line 0. Within
a line, state ment 1 is at the be gin ning, state ment 2 co mes af ter the first co lon or THEN,
and so on). Some of the codes will have a code num ber or let ter so that you can re fer to
the ta bles be low. There are two types of er ror re ports: Gen eral and Storage Sys tem re -
lated.

General Errors

The be hav iour of CONTINUE de pends very much on the re ports. Nor mally, CONTINUE
goes to the line and state ment spec i fied in the last re port, but there are ex cep tions with re -
ports 0, 9 and D.

Be low, there is a ta ble show ing all the re ports to gether with the cir cum stances they can
oc cur.

Code Report Description Situation

0 OK Successful completion, or jump to a line number bigger
than any existing. This report does not change the line
and statement jumped to by CONTINUE.

Any

1 NEXT without FOR The control variable does not exist (it has not been set up
by a FOR statement), but there is an ordinary variable
with the same name.

NEXT

 2 Variable not found For a simple variable, this will happen if the variable is
used before it has been assigned to in a LET, READ or
INPUT statement or loaded from tape or set up in a FOR
statement. For a subscripted variable, it will happen if the
variable is used before it has been dimensioned in a DIM
statement or loaded from a storage device.

Any

3 Subscript wrong A subscript is beyond the dimension of the array, or there
are the wrong number of subscripts. If the subscript is
negative or bigger than 65535, then error B will result.

Subscripted
variables,
substrings

4 Out of memory There is not enough room in the computer for what you
are trying to do. If the computer really seems to be stuck
in this state, you may have to clear out the command line
using DELETE and then delete a program line or two
(with the intention of putting them back afterwards) to
give yourself room to manoeuvre with – say – CLEAR.

LET, INPUT, FOR ,
DIM, GO SUB,
LOAD, MERGE,
BANK, PALETTE,
SPRITE, LAYER,
TILE. Sometimes
during expression
evaluation

5 Out of screen An INPUT statement has tried to generate more than 23
lines in the lower half of the screen. Also occurs with
PRINT AT 22, …, TILE and SPRITE.

INPUT, PRINT AT,
SPRITE, TILE

6 Number too big Calculations have led to a number greater than about
1038.

Any arithmetic

7 RETURN without GO SUB There has been one more RETURN than there were GO
SUBs.

RETURN

8 End of file Storage device, etc,
operations

9 STOP statement After this, CONTINUE will not repeat the STOP, but
carries on with the statement after.

STOP

A Invalid argument The argument for a function is no good for some reason. SQR, LN, ASN,
ACS, USR (with
string argument)

322 ZX Spectrum Next – User Manual

Appendix B – Reference Reports and Error Codes

Code Report Description Situation

B Integer out of range When an integer is required, the floating point argument
is rounded to the nearest integer. If this is outside a
suitable range then error B results. For array access, see
also error 3.

RUN, RANDOMIZE,
POKE, DIM, GO
TO, GO SUB, LIST,
LLIST, PAUSE,
PLOT, CHR$,
PEEK, USR (with
numeric argument),
PALETTE, BANK,
SPRITE, LAYER,
TILE, POINT, Array
access

C Nonsense in BASIC The text of the (string) argument does not form a valid
expression.

VAL, VAL$

D BREAK - CONT repeats BREAK was pressed during some peripheral operation.
The behaviour of CONTINUE after this report is normal in
that it repeats the statement. Compare with report L.

LOAD, SAVE,
VERIFY, MERGE,
LPRINT, LLIST,
COPY. Also when
the computer asks
scroll? and you type
N, SPACE or
STOP1

E Out of DATA You have tried to READ past the end of the DATA list. READ

F Invalid file name SAVE with name that is empty or unacceptable (see
Chapter 20)

SAVE

G No room for line There is not enough room left in memory to
accommodate the new program line.

Entering a line into
the program

H STOP in INPUT Some INPUT data started with STOP, or – for INPUT
LINE – STOP was pressed. Unlike the case with error 9,
after error H CONTINUE will behave normally, by
repeating the INPUT statement.

INPUT

I FOR without NEXT There was a FOR loop to be executed no times (e.g.
FOR n=1 TO 0) and the corresponding NEXT statement
could not be found.

FOR

J Invalid I/O device Storage device etc.
operations

K Invalid colour The number specified is not an appropriate value. INK, PAPER,
BORDER, FLASH,
BRIGHT, INVERSE,
OVER, PALETTE;
also after control
characters

L BREAK into program BREAK pressed, this is detected between two
statements. The line and statement number in the report
refer to the statement before BREAK was pressed, but
CONTINUE goes to the statement after (allowing for any
jumps to be done), so it does not repeat any statements.

Any

M RAMTOP no good The number specified for RAMTOP is either too big or too
small.

CLEAR, BANK;
possibly in RUN

N Statement lost Jump to a statement that no longer exists. RETURN, NEXT,
CONTINUE

O Invalid stream Storage device, etc,
operations

P FN without DEF An attempt was made to call a function with FN that has
not been defined with a matching DEF FN statement.

FN

Q Parameter error Wrong number of arguments, or one of them is the
wrong type (string instead of number or vice versa).

FN

R Tape loading error A file on tape was found but for some reason could not
be read in, or would not verify.

VERIFY, LOAD or
MERGE

d Too many parentheses Too many parentheses around a repeated phrase in one
of the arguments.

PLAY

i Invalid device The storage device specified does not exist

k Invalid note PLAY came across a note or command it didn’t
recognise, or a command which was in lower case.

PLAY

l Too big A parameter for a command is an order of magnitude too
big.

PLAY

m Note out of range A series of sharps or flats has taken a note beyond the
range of the sound chip.

PLAY

ZX Spectrum Next – User Manual 323

General Errors Appendix B – Reference

1 STOP cannot normally be entered in NextBASIC as a token; this is retained for compatibility and does work when you
switch to 48K mode

Code Report Description Situation

n Out of range A parameter for a command is too big or too small. If the
error is very large, error L results.

PLAY

o Too many tied notes An attempt was made to tie too many notes together. PLAY

Invalid mode The mode specified does not exist LAYER

Direct command error An attempt was made to execute a command within a
program that's meant to be executed directly from the
command line or to RUN a procedure definition
(DEFPROC)

DEFPROC, ERASE,
LINE, LINE
MERGE, BANK
LINE MERGE

Loop error Occurs in REPEAT...REPEAT UNTIL loops where a
matching REPEAT UNTIL or REPEAT cannot be found.

REPEAT...REPEAT
UNTIL, WHILE

No DEFPROC A PROC was found without a matching
DEFPROC...ENDPROC block

PROC

Storage Device Related Errors

The fol low ing are re ports gen er ated by NextZXOS for stor age de vice er rors. Those marked
in the left-hand col umn with RIC may be fol lowed by the op tions Re try, Ig nore or Can cel?

Some re ports may oc cur with the code(s) shown or with out them.

Code Report Description
e Already exists The destination filename or directory already exists. Also occurs when

attempting to map a drive letter that is already mapped to another device.

Bad file number An attempt was made to operate on a file which has not been opened. It is
unlikely that this error will ever be seen.

f Bad filename The filename used does not conform to the filename requirements for the
filesystem.

Bad parameters One of the values provided is out of range.

Code length error Trying to load a CODE file from the storage device that is longer than the value
given on the LOAD command.

Dest can't be wild Trying to give a wildcard file specification for the destination file in a COPY
command when the source also contains wildcard characters. In this case, the
destination can only be a drive letter.

Dest must be path The source filename in a COPY command contains wildcard characters, but
the destination is only a single file name. In this case, the destination can only
be a path.

Dir full Unable to add further entries to the directory, or unable to remove a directory
because it contains files or subdirectories.

RIC Disk changed The disk in the drive has been changed without properly REMOUNTing.

RIC Disk error An error has occurred accessing a storage device. If this error persists it may
indicate that the device is faulty.

Disk full Saving or copying files to a storage device has used up the free space. The
CAT command can be used to check that there is sufficient free space before
attempting such an operation. This may leave a partly-written file if there was
only space for some of it. This part should be erased, as any attempt to use it
will fail.

Dot command error The error that was trapped by ON ERROR was generated by a dot command.
This is seen only when ERROR is used to cause the last trapped error.

End of file An attempt has been made to read a byte past the end-of-file position.

g,h File not found The filename specifies a file that does not exist.

Fragmented – use .DEFRAG The file is split into parts across the disk. Defragment it using the .DEFRAG dot
command.

In use An attempt has been made to unmap or re-map a drive that has files open on it,
or to access a file that is already open for another purpose.

Invalid attribute The attribute character following + or - in a MOVE command is not P, S or A (or
there is more than one character after the +/-).

Invalid device The physical device specified does not exist.

Invalid drive A drive letter that does not exist has been specified.

Invalid partition The partition specified does not exist, or is the wrong type.

Invalid path The path specified does not exist

No rename between drives An attempt has been made to use the MOVE command specifying source and
destination filenames that are on different drives.

No swap partition An application attempted to access a swap partition, but couldn’t find one.
Create a new swap partition with .MKSWAP and try again.

Not bootable An attempt has been made to boot a disk image without a boot sector or boot
program.

Not implemented An attempt was made to access a facility which isn’t available.

324 ZX Spectrum Next – User Manual

Appendix B – Reference Storage Device Related Errors

RIC Not ready The storage device was not ready. This usually happens because it has been
removed.

Out of handles There aren’t enough handles left to perform the current operation. Unmap a
drive and try again.

Partition open The partition you are trying to delete or map is already mapped to a drive.

RIC Read only An attempt has been made to write to a file or storage device which is read-only
or has been write-protected.

RIC Seek fail The device is unable to locate the sector that has been requested. If this error
persists it may indicate that the device or disk image is faulty.

Too big An attempt has been made to write a file that is too large for the filesystem
(greater than 8MB for +3DOS filesystems, 2GB on FAT16 or 4GB on FAT32).

RIC Unsuitable media The device or disk image is formatted in a way that cannot be handled.

b Wrong file type Trying to LOAD a file of the wrong type (eg trying to load a CODE file as a
NextBASIC program).

NextBASIC Keywords and Functions

The fol low ing is a list of all NextBASIC keywords in al pha bet i cal or der with a short de scrip -
tion re gard ing their function.

Keyword Meaning

BANK 1346 FORMAT Reserve banks 1,3,4,6 for use by the RAMdisk again.

BANK 1346 USR Allow banks 1,3,4,6 to be used by the BANK command.

BANK m COPY TO n Copy the contents of bank m to bank n

BANK m DPOKE o, list... Double POKE a sequence of comma-separated values starting at offset o in bank m.

BANK m ERASE [o, l,] [v] Fill bank m's optional l bytes (all if not specified) at optional offset o (0 if not specified) with
value (zero is used if value not specified).

BANK m CLEAR Marks bank m as free for use by other parts of the system.

BANK m COPY o, l TO n,o2 Copy l bytes starting at offset o in bank m to offset o2 in bank n.

BANK m GOSUB n GOSUB line n in bank m. To GOSUB the main program from a banked section, use m=255.
See also RETURN and GOSUB.

BANK m GOTO n GOTO line n in bank m. To GOTO the main program from a banked section, use m=255.

BANK m LAYER o|x,y,w,h
TO [rop] x,y,w,h|o

Copies data to | from the screen (in the current mode) from | to offset in bank m. [rop] is an
optional symbol modifier which affects how the data is copied.

BANK m LINE x,y Copies lines x to y inclusive from the main program to bank m.

BANK m LIST [n|PROC
name()]

List lines (optionally from line n or procedure named name) in bank m.

BANK m MERGE Copy all lines back from bank m into the main program.

BANK m POKE o, list... POKE a sequence of comma-separated values starting at offset o in bank m.

BANK m PROC name
([expressionlist]) [TO
paramlist]

Call a procedure in bank m. To call a procedure in the main program from a banked section,
use n=255. See also DEFPROC.

BANK m RESTORE n Set the DATA pointer to line n in bank m

BANK NEW var Reserves the next available free bank number and assigns it to the numeric variable var

BEEP x, y Sounds a note through the loudspeaker for x seconds at a pitch y semitones above middle
C (or below if y is negative).

BORDER m Sets the colour of the border of the screen.

BRIGHT n Sets brightness of characters subsequently printed. n=0 for normal, 1 for bright. 8 for
transparent.Error K if n not 0, 1 or 8

CAT [#n,] [[filespec
[EXP]]|TAB|ASN]

Produces an alphanumerically sorted catalog of files on screen or to an optional stream n
from the default drive or according to the optional filespec in standard or EXPanded form.
With the optional TAB and ASN modifiers produces information regarding partitions and
drive letter assignments.

CD filespec Change the current drive and/or directory to the one specified in filespec.

CIRCLE x, y, z Draws an arc of a circle, centre (x,y), radius z

CLEAR [n] Deletes all variables, freeing the space they occupied. Does RESTORE and CLS, resets the
PLOT position to the bottom left-hand corner and clears the NextBASIC Return stack.
Optional address n attempts to change the RAMTOP to that address

CLOSE #n Marks stream n as being unattached to any channel.

CLS (Clear Screen). Clears the display of the current layer

CONTINUE Continues the program, starting where it left off last time it stopped with report other than 0.

COPY Sends (dumps) a copy of the screen display to a ZX Printer or compatible.

COPY u TO SCREEN$ Displays the contents of a file defined by filespec u on the screen. Control characters (tabs,
line feeds, etc.) are replaced by spaces.

COPY u1 TO u2 Copies file(s) defined by filespec u1 to the destination defined by filespec u2

ZX Spectrum Next – User Manual 325

NextBASIC Keywords and Functions Appendix B – Reference

Keyword Meaning

DATA list ... Part of the DATA list. Must be in a program, otherwise has no effect.

DEF FN ? (?1,..., ?k)=e User-defined function definition; must be in a program. Each of ? and ?1 to ?k is either a
single letter or a single letter followed by $ for string argument or result.Takes the form DEF
FN a()=e if no arguments.

DEFPROC name
([paramlist])

Defines a procedure, where name follows the same naming rules as standard numeric
variables. paramlist is an optional list of up to 8 variable names (simple strings, numeric
variables or integer variables, but not arrays of any type). See ENDPROC.

DIM #n,var Returns the extent (or size) of stream n and stores it in variable var.

DIM ?(n1 , . . . ,nk) Deletes any array or string with the name ?, and sets up an array of characters or numbers
with k dimensions n1 ,...,nk. Initialises all the values to . This can be considered as an array
of strings of fixed length nk , with k-1 dimensions n1,...,nk-1 . An array is undefined until it is
dimensioned in a DIM statement.

DRAW x,y [,z] Draws a line from the current plot position moving x horizontally and y vertically relative to it
while turning through an optional angle z

DRIVER drid,callid[,n1[,n2]]
[TO var1[,var2[,var3]]]

Call function callid in driver drid, where n1 and n2 are optional values to pass to the driver,
and var1, var2 and var3 are optional variables to receive results back from the driver.

ELSE See IF ... THEN ... ELSE

ENDPROC [= expressionlist] Ends execution of a procedure defined with DEFPROC and returns up to 8 local values via
the optional expressionlist to the calling PROC command.

ERASE [m,n] Erases the entire NextBASIC program and leaves variables intact. If specified with the
optional m and n parameters, erases all program lines between m and n inclusive.

ERASE filespec ERASES all files specified by filespec. Cannot erase entire drives

ERROR [TO e[,l[,s[,b]]]] Regenerate the last error that was trapped by an ON ERROR command and store it in
optional variables e, l, s, b (for error code, line, statement number and bank)

FLASH n Defines whether characters will be flashing or steady.

FOR ?=x TO y [STEP z] Deletes any simple variable ? and sets up a control variable with value x, limit y, optional
step z (or 1 if STEP is not defined), and looping address referring to the statement after the
FOR statement. See NEXT.

GO TO n Jumps to line n (or, if there is none, the first line after that). See also BANK...GO TO.

GO TO #n, m Sets the current position of stream n to m.

GOSUB n Pushes the line number of the GOSUB statement onto a stack; then as GO TO n. See also
RETURN and BANK...GOSUB.

IF x THEN y [: ELSE z] If x is true (non-zero) then statement list y is executed, otherwise optional statement list z is
executed. ELSE must be on the same line as IF.

INK n Sets the ink (foreground) colour of characters subsequently printed.

INPUT [#n] [LINE]
inputitems

INPUTs inputitems from the keyboard or optional stream n. Optional LINE modifier strips
the quotes from the input items

INVERSE n Inverts the next printed character(s) from INK to PAPER

LAYER AT x,y Sets the display offset for the top-left of the screen for the current layer to x,y.

LAYER BANK n,m (Layer 2 only). Set current banks n...n+2 as frontbuffer (to be displayed) and banks
m...m+2 as backbuffer (for rendering).

LAYER CLEAR Resets all layer information to the default values. Resets memory banks, mode, layer 2
enable, layer offsets and layer ordering. Also done by NEW

LAYER DIM x1,y1,x2,y2 Sets the clip window for the current layer from (x1,y1) to (x2,y2). Areas of the layer outside
this window are not visible.

LAYER ERASE x,y,w,h[,f] Fill region width w pixels, height h pixels, top-left corner x,y with optional value f. If f is not
specifed, 0 is used.

LAYER m[,n] Selects the screen layer m and optional mode m.

LAYER OVER n Sets sprite/layer SLU ordering

LAYER PALETTE n [BANK
m,o]| n,i,v

Switch to using palette n (0 or 1) for the current layer and optionally sets palette from bank
m, offset o -or- defines index I for palette n as 9-bit colour v

LET [%]v = [%]e Assigns the value of [optionally integer] expression e to the [optionally integer] variable v.
LET cannot be omitted.

LINE start, step|m,n TO
mm,nn

Either renumbers an entire NextBASIC program starting with line start with an increment of
step -or- a section of the NextBASIC program, beginning with line m and ending with line n,
with the new starting line number mm and incrementing by nn.

LINE MERGE first,last Merges lines from first to last into a single line (separated by colons). Can only be used as a
direct command, not within a program.

LIST [[#n],] [m|PROC
name]

Lists the current program to the screen or optional stream number starting with optional line
m -or- PROC name. See also BANK...LIST and LLIST

LLIST [m] Like LIST but using the printer

326 ZX Spectrum Next – User Manual

Appendix B – Reference NextBASIC Keywords and Functions

Keyword Meaning

LOAD filespec [BANK
m[,o[,n]]|CODE m[,n]|DATA
arrayspec|LAYER|SCREEN
$]

If filespec is a drivespec: Makes the named drive the current default input device for all
subsequent disk operations (COPY, ERASE, MOVE etc.). If the drive letter specified is 'T:',
then all subsequent LOADs will default to tape else loads a NextBASIC program into
memory. With optional modifier BANK it loads the file as binary data into bank m at optional
offset o and optional length n. Optional modifer CODE does the same at address m an
optional length n. Optional modifier DATA loads stored data into the array specified by
arrayspec. Optional modifier LAYER attemps to load a screen into the current layer while
SCREEN$ does the same for Layer 0 screens. See also SAVE, MERGE, VERIFY. If a drive
letter is not specified in the filespec, the default drive will be used.

LOCAL variablelist Defines a local variable inside a procedure defined with DEFPROC or a subroutine called
with GOSUB. One local command accepts up to 256 variable names, and multiple LOCAL
commands may be used.

LPRINT Like PRINT, but using the printer.

MERGE filespec Like LOAD filespec but does not delete old program lines and variables except to make way
for new ones with the same line number or name. If a drive letter is not specified, the default
drive will be used.

MKDIR filespec Create a new directory/folder specified by filespec on the current storage device. If filespec
includes a drivespec then that drive will be used

MOVE filespec1, filespec2 Renames and/or moves a file defined in filespec1 to filespec2 within the same drive.

MOVE filespec TO attribute Sets or resets attributes for the file(s) defined by filespec

NEW Starts the NextBASIC system afresh, deleting any program and variables, and using the
memory up to and including the byte whose address is in the system variable RAMTOP.
The system variables UDG, P RAMT, RASP and PIP are preserved. Returns control to the
Startup menu, but does not erase files held on drive M: (the RAMdisk).

NEXT ? Finds the control variable ?, adds its step to its value and jumps to the looping statement or
exits if the limit has been reached. See also FOR.

NEXT #n,v Gets the next character of input from stream n and stores it in the variable v.

ON ERROR [statementlist] Turns off error trapping or if used with the optional statement list, the statementlist will
execute where an error report would normally appear.

OPEN #n,channelspec Allows stream number to be attached to the channel identified by channelspec.

OUT m,n Outputs byte n at I/O port address m.

OVER n Controls overprinting for characters subsequently printed.

PALETTE CLEAR Resets all palettes and related settings to defaults. This is also done by NEW.

PALETTE DIM n Sets palette type as 8 or 9 bit.

PALETTE FORMAT n Enables the EnhancedULA extended palette with n INKs (1,3,7,15,31,63,127 or 255) or
disables it (0)

PALETTE OVER n Sets the global transparency colour to n (default value is 227).

PAPER n Like INK, but controlling the paper (background) colour.

PAUSE n Stops computing and displays the display file for n frames.

PLAY f1[,f2,...f9] Interpret up to nine command strings and play them simultaneously.

PLOT x,y Draws a pixel in the current INK colour (subject to OVER and INVERSE) at the x,y coordinate
of the current layer.

POINT x,y TO var Checks the pixel on the current layer at (x,y) and stores the value in variable var.

POKE a,valuelist POKEs the list of values in valuelist to memory map address a. Se also BANK POKE.

DPOKE addr,valuelist... Double POKEs the list of values in valuelist to memory map address a. Se also BANK
DPOKE.

PRINT [#n,] [AT x,y;] items Output items to the display or optionally to stream n. Optional AT modifier positions the
output at x,y

PRINT POINT x,y Set the print position to pixel coordinates x,y.

PROC name (expressionlist)
[TO paramlist]

Call procedure defined with DEFPROC. The number of expressions and each of their types
must match those defined in the DEFPROC, otherwise a Q Parameter Error report will be
generated. TO paramlist will copy return values declared by ENDPROC to up to 8 variables.

PWD [#n] Prints the current working directory to the screen, or the specified stream number.

RANDOMIZE [n] Sets the system variable (called SEED) used to generate the next value of RND. If optional n
=0 or blank SEED is given the value of another system variable (called FRAMES).

READ v1, v2 ,... vk Assigns to the variables using successive expressions in the DATA list.

REG n,v Sets Next Register n with value v.

REM ...
; ...

Remark. No effect. ' . . . ' can be any sequence of characters except ENTER.

REMOUNT Reinitialises the filing system, following a change of SD card.

REPEAT
statementlist
[WHILE y statementlist2]
REPEAT UNTIL x

Statement or statements in statementlist and statement list2 are repeated until x is true. The
loop is terminated skipping statementlist2 if y evaluates to false

RESTORE [n] Restores the DATA pointer to the first DATA statement in line optional line n or to the first
DATA statement.

ZX Spectrum Next – User Manual 327

NextBASIC Keywords and Functions Appendix B – Reference

Keyword Meaning

RETURN Takes a reference to a statement off the NextBASIC Return stack, and jumps to the line after
it. See also GOSUB and BANK GOSUB.

RETURN #n,var Takes the current position of stream n and stores it in variable var.

RMDIR filespec Removes an already empty folder as specified by filespec.

RUN [n] CLEAR, and then GO TO optional line n or to the first line of the program

RUN AT speed Changes the speed of the ZX Spectrum Next.

SAVE filespec [LINE n|BANK
m[,o[,n]]|CODE m[,n]|DATA
arrayspec|LAYER|SCREEN
$]

If filespec is a drivespec: Makes the named drive the current default input device for all
subsequent disk operations (COPY, ERASE, MOVE etc.). If the drive letter specified is 'T:',
then all subsequent SAVEs will default to tape else saves a NextBASIC program into
memory with optional modifier LINE n that instructs subsequent LOAD operations to start
executing the program from line n. With optional modifier BANK it SAVES the file as binary
data from bank m at optional offset o and optional length n. Optional modifer CODE does
the same at address m an optional length n. Optional modifier DATA saves the array
specified by arrayspec. Optional modifier LAYER saves the current layer's display while
SCREEN$ does the same for Layer 0 screens. See also LOAD, MERGE, VERIFY. If a drive
letter is not specified in the filespec, the default drive will be used.

SPECTRUM [filespec|
ATTR n|BRIGHT n|
CHR$ n|FLASH n|
INK n|PAPER n|
SCREEN$ n,t]

Sets the 128K ROM into Spectrum 48K compatibility mode. Optional filespec defining a
48K/128K/ZX80 and ZX81 snapshot loads and executes it. Optional ATTR modifier, sets the
colour scheme of NextBASIC Editor. Optional BRIGHT modifier, sets the BRIGHT bit of the
colour scheme of NextBASIC Editor. Optional CHR$ modifier, changes the mode to
32/64/85 columns. Optional FLASH modifier, sets the flash bit of the colour scheme of
NextBASIC Editor. Optional INK modifier sets the ink colour of the NextBASIC Editor while
the PAPER modifiers sets the paper colour of the NextBASIC Editor. The SCREEN$ modifier
adjusts the screensaver.

SPRITE BANK b [,o,p,n] Defines all 64 sprite patterns using the 16K of data (256 bytes per sprite) in bank b or with
optional values o,p,n defines n sprite patterns starting with pattern p located at offset n.

SPRITE BORDER n Enable (n=1) or disable (n=0) sprites over the border

SPRITE CLEAR Resets the sprite attributes and global settings to defaults. This is also done by NEW.

SPRITE DIM x1,y1,x2,y2 Sets the clip window for sprites from (x1,y1) to (x2,y2).

SPRITE PALETTE n [BANK
m,o]| n,i,v

Switch to using palette n (0 or 1) for the Sprite System and optionally sets palette from bank
m, offset o -or- defines index I for palette n as 9-bit colour v

SPRITE PRINT n Enable (n=1) or disable (n=0) sprites.

SPRITE s,x,y,i,f Set sprite s to image i, position (x,y) with flags f.

STOP Stops the program with report 9. See also CONTINUTE

TILE w,h |AT x,y [TO x2,y2]
Draws a section of the screen from a tilemap. Optional AT specifies tile offset x,y in the
tilemap and optional TO specifies ending tile offset x2,y2

TILE BANK n Define bank n as containing the tiles (up to 4 banks n..n+3 if 16x16 tiles).

TILE DIM n,offset,w,tilesize Define bank n as containing the tilemap, starting at offset offset in the bank. The tilemap is
width w (1-2048) and uses 8x8 (tilesize=8) or 16x16 (tilesize=16) tiles.

VERIFY filespec Like LOAD (from tape), but the tape information is not loaded into RAM – instead, it is just
compared against what is already in RAM.If the filespec is a drive letter, then sets the
default drive. Only applicable to tape

The fol low ing is a list of all NextBASIC func tions in al pha bet i cal or der with a short de scrip -
tion re gard ing their purpose:

Function Meaning

ABS x Absolute Value of x

ACS x Arccosine of x in radians

ASN x Arcsine of x in radians

ATN x Arctangent of x in radians

ATTR (x,y) A number whose binary form codes the attributes of line x, column y on the display

CHR$ n The character whose code is n, rounded to the nearest integer.

CODE f The code of the first character in string f (or 0 if f is the empty string).

COS x Cosine (x in radians).

[BANK n] DPEEK a Reads a double-byte (16 bit word) from memory address a or bank n offset a.

EXP x Returns the natural exponential function of e to the power x.

FN a() FN followed by a letter calls up a user-defined function (see keyword DEF FN).

IN n The result of inputting at processor level from port n

INKEY$ Reads the keyboard.

INT x Returns the Integer part of floating point expression x (Always rounds down)

INT { x } Returns an unsigned 16-bit integer expression, from any floating point expression x

LEN string Returns the length of string

LN x Natural logarithm (to base e).

328 ZX Spectrum Next – User Manual

Appendix B – Reference NextBASIC Keywords and Functions

Function Meaning

[BANK n] PEEK o Returns the byte at address o or if used with the optional BANK, the byte at offset o of bank
n

[BANK n] PEEK$ (o,len|t) Reads memory region of length len stored in the addresses beginning with o and stores it in
a string –or– Reads the string terminated with a user specified terminator t beginning with
address o. With the optional BANK reads offset o of bank n.

PI Returns and approximation of p (3.14159265...)

POINT (x,y) Retruns 1 if the pixel at (x,y) is ink colour. 0 if it is paper colour.

REG n Reads state of Next Register n

RND [n|i] Returns the next pseudorandom number n in the range from 0 to 1 –or– the next
pseudorandom integer number in the range of 0 to i-1

SCREEN$ (x, y) Returns the character that appears, either normally or inverted, on the display at line x,
column y.

SGN x Signum; the sign (-1 for negative, 0 for zero or +1 for positive) of x.

SGN {i} Returns a signed 16-bit integer from integer expression i

SIN x Returns the sine of x in radians.

SQR x Returns the square root of x.

STR$ x Returns the string of characters that would be displayed if x were printed.

TAN x Returns the tangent of x in radians.

[BANK n] USR o Calls the machine code subroutine whose starting address is o. With optional BANK does
the same for offset o in bank n. On return, the result is the contents of the bc register pair.

USR l The address of the bit pattern for the user-defined graphic corresponding to character l.

VAL f Evaluates string f (without its bounding quotes) as a numerical expression.

VAL$ f Evaluates string f (without its bounding quotes) as a string expression.

The Decimal System

Most Eu ro pean lan guages count us ing a more or less reg u lar pat tern of tens – in Eng lish,
for ex am ple, al though it starts off a bit er rat i cally, it soon set tles down into reg u lar groups:

twenty, twenty one, twenty two, . . . twenty nine
thirty, thirty one, thirty two, . . . thirty nine
forty, forty one, forty two, . . . forty nine

This fol lows from us ing Arabic nu mer als, which have ten sym bols 0 – 9, in a place holder
sys tem where the po si tion of each digit is mul ti plied by a power of ten. The rea son for us -
ing ten as the ba sis of num bers is that we hap pen to have ten fingers.

The Binary System

In stead of us ing the dec i mal sys tem, with ten as its base, com put ers use a sys tem called
bi nary, based on two val ues 0 and 1. Like hu mans have ten fin gers, com puter cir cuits have
two states; low-volt age or off (0) and high-volt age (1). The two bi nary dig its are called bits,
and a bit is ei ther 0 or 1. Com put ers there fore write 10 to rep re sent 2, 100 to rep re sent 4,
1000 to rep re sent 8, and so on for the pow ers of 2.

It is cus tom ary to “pad out” bi nary num bers with lead ing ze roes so that they al ways con -
tain at least four bits, called a nib ble – for ex am ple, 0000, 0001, 0010, 0011 (rep re sent ing
0 to 3 dec i mal). The rea son for do ing this is that it makes it easy to rep re sent long bi nary
num bers more com pactly us ing hex a dec i mal as we will see further below.

Through out this man ual we've writ ten bi nary num bers ei ther with the suf fix of a lower case
b or with the pre fixes of @ and BIN as sup ported by the NextBASIC In te ger ex pres sion
evaluator.

Re gard less of how use ful it is to write num bers in the way com put ers un der stand them, we
have the ob vi ous prob lem of rep re sent ing them on pa per; it's much eas ier for us to write
and understand

65535 + 65534 than 1111111111111111b + 1111111111111110b.
The Hexadecimal System

Bi nary num bers quickly be come unwieldly be cause even mod est quan ti ties re quire long
strings of 0s and 1s to rep re sent them. This is a nat u ral re sult of only us ing two sym bols to

ZX Spectrum Next – User Manual 329

The Decimal System Appendix B – Reference

rep re sent each digit. Hex a dec i mal (or hex for short) was adopted to eas ily and com pactly
rep re sent bi nary num bers. Hex a dec i mal is a base 16 num ber ing sys tem with 16 sym bols.
0 through 9 are used for the first ten sym bols, rep re sent ing dec i mal val ues 0 – 9, and the
last six sym bols are A, B, C, D, E, F rep re sent ing dec i mal val ues 10 – 15. What co mes af -
ter F? Just as in dec i mal we write 10 for ten, in hex a dec i mal we write 10 for six teen since
each po si tion is as so ci ated with a power of 16.

The rea son why hex a dec i mal is so well suited to rep re sent ing bi nary num bers is that six -
teen is a power of 2. This means bi nary dig its can be grouped to gether and di rectly con -
verted to a hex a dec i mal digit. Since six teen is the fourth power of 2, four bi nary dig its – a
nib ble – can be rep re sented by a sin gle hex a dec i mal digit. Con ver sion be tween bi nary
and hex a dec i mal can then be done by sight and hex a dec i mal be comes a quick way to
rep re sent large bi nary quan ti ties as well as an easy way to visualize bit patterns.

The ta ble be low shows the cor re spon dence be tween bi nary, hex a dec i mal and dec i mal
values:

Binary 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Hexadecimal 0 1 2 3 4 5 6 7 8 9 A B C D E F

Decimal 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

To con vert hex to bi nary, change each hex digit into a nib ble (four bits), us ing the ta ble
above. Con versely, to con vert bi nary to hex, di vide the bi nary num ber into nib bles, start ing
on the right, and then change each group into the cor re spond ing hex digit.

Through out this man ual, we've writ ten hex a dec i mal num bers suffixed by a lower case let -
ter h or pre fixed by $ as the lat ter no ta tion is the one sup ported by the NextBASIC In te ger
Ex pres sion evaluator.

Bits, Bytes and Words

The bits in side the com puter are mostly grouped into sets of eight – these are called
bytes. A sin gle byte can rep re sent any num ber from 0 to 255 dec i mal (11111111b or
FFh). A sin gle byte can also rep re sent any char ac ter in the ZX Spec trum Next char ac ter
set. Its value can be writ ten with two hex digits.

Two bytes can be grouped to gether to make what is called a word. A word can be writ ten
us ing six teen bits or four hex dig its, and rep re sents a num ber from 0 to 65535 dec i mal.

A byte is al ways eight bits, but words vary in length from com puter to com puter. In Sinclair
com puter tra di tion, 16-bit num bers are called words while 32-bit num bers are called long
words.

Set ting a bit means mak ing a spe cific bit 1. Re set ting a bit means mak ing a spe cific bit 0.
In dig i tal logic, there is also a con cept of “ac tive low” and “ac tive high”. This means a sig -
nal be comes ac tive when it is 0 or 1 re spec tively. The Z80n has an MREQ (or /MREQ) sig -
nal, for ex am ple. This is an “ac tive low” sig nal; to dis tin guish them from “ac tive high”
sig nals, we usu ally write ac tive low sig nals with a bar over their names (Or pre fix them with
a for ward slash /). This means the Z80n in di cates a mem ory cy cle by mak ing MREQ 0.

Using Binary and Hex in NextBASIC

Our first in tro duc tion to bi nary and hex was in Chap ter 7 which in tro duced In te ger Ex pres -
sions. Chap ter 14 in tro duced the use of the BIN key word. Chap ter 16 showed us how
use ful bi nary was in de fin ing colours with the PALETTE key word while Chap ters 23 and 24
with the in tro duc tion of bi nary bitmasks for the REG and OUT keywords and the mem ory
ad dress space showed the usefulness of hexadecimal.

In re al ity many key word pa ram e ters are bi nary; As an ex am ple ATTR and RUN AT's dec i -
mal pa ram e ters are re ally dec i mal “trans la tions” of the bits that are be ing set in side the
com puter's mem ory or the Next Reg is ters that these keywords control.

330 ZX Spectrum Next – User Manual

Appendix B – Reference Bits, Bytes and Words

Machine Personalities,
Update, Configuration

and Troubleshooting

This Page Intentionally Left Blank

Machine Personalities

Overview

Your ZX Spec trum Next com puter is unique in the fact that un like other com put ers that em -
u late older ma chines us ing soft ware, it changes its ac tual hard ware to re flect the hard ware
of an older ZX Spec trum model. This fact, is what al lows it to achieve al most 100% com -
pat i bil ity with older mod els whereas even a ZX Spec trum 128K for ex am ple could n't run a
lot of soft ware orig i nally made for the 48K.

The tech nol ogy that makes all this pos si ble is con tained within a very large re con fig ur able
logic de vice called a Field Pro gram ma ble Gate Ar ray (FPGA).

For all pur poses, once your ZX Spec trum Next goes into an older ZX Spec trum model per -
son al ity, it's al most iden ti cal to that model in ter nally. More over, since FPGAs can be made
into al most any con ceiv able kind of dig i tal cir cuit us ing a Hard ware De scrip tion Lan guage
(HDL), your ZX Spec trum Next can be come other ma chines us ing dif fer ent CPU mod els;
this is what we call multicore capability.

Be fore we ex am ine what ma chine per son al i ties are avail able on the ZX Spec trum Next, it is
a good idea to start with learn ing about how to up date the ma chine's core(s), firm ware and
sys tem software.

The Cores and their update procedures

The ZX Spec trum Next is pri mar ily a ZX Spec trum com puter; its main core will al ways be
one of a ZX Spec trum com pat i ble ma chine (al beit with many ex tra fea tures) how ever since
it is also a multicore ma chine, it has two sep a rate (but very sim i lar) pro ce dures to up date
its main core and a third one for ad di tional cores1.

Let us first clar ify a few things about what a core is and what it is n't. A core is a bitstream
writ ten in an HDL, “com piled” for the spe cific model of Xilinx™ FPGA the ZX Spec trum
Next uses and stored onboard a se rial flash rom IC on the ZX Spec trum Next board. It con -
tains all the logic that al lows the FPGA de vice to re con fig ure it self into the in di vid ual com -
po nents that make up a ZX Spec trum Next. Ev ery time you turn on your ZX Spec trum Next
the core gets tranferred to the FPGA al most in stan ta neously. It does n't get etched per ma -
nently in side the FPGA; in stead the FPGA is empty ev ery time the computer gets powered
up.

We may be talk ing about one ZX Spec trum Next core but in re al ity there are two; there's the
Anti Brick core (AB) and the reg u lar core you get with ev ery new Sys tem/Next™ up date.
The AB core serves two pur poses: The main is to per form the inital ma chine startup and
the sec ond ary is to pro tect you from a botched at tempt to flash a new core into the sys -
tem's flash rom (hence the name Anti Brick2).

Ev ery time the com puter starts it trans fers the AB core onto the FPGA, then the AB core
loads the Firm ware file from the root folder of the Sys tem/Next™ dis tri bu tion and that in
turn loads the reg u lar core into the FPGA, then loads the ap pro pri ate con fig u ra tion and fi -
nally starts the machine.

The AB core does not get up dated; only the reg u lar core is. The AB core needs a spe cial
pro ce dure which is done at the fac tory to get up dated so it won't be cov ered here.

There are two meth ods of up dat ing the reg u lar core; the first one is the nor mal one, and
the one you should use while the sec ond one is re served only if told so by the re lease
notes of a Sys tem/Next™ dis tri bu tion or be cause your up date some how failed (for ex am -
ple lost power while updating).

ZX Spectrum Next – User Manual 333

Overview Appendix C – Machine Personalities

1 SpecNext Ltd does not offer additional cores at the time of writing; 3rd party cores are the responsibility of their
respective authors

2 Bricking is a term used for a failed update in digital electronics that leaves a device unusable; in other words
unmovable as a “brick”.

The reg u lar core is con tained within a file named TBBLUE.TBU. In or der to up date the
flash rom you need to place it on the root folder of your SD Card to gether with the file con -
tain ing the firm ware: TBBLUE.FW. Both of these files need to be pres ent for a suc cess ful
up date. Reg u lar op er a tions, how ever , re quire only the TBBLUE.FW file to be pres ent at all
times in the root of your Sys tem/Next™ dis tri bu tion. Re gard less of the up date method you
need to have them both so make a note for that.

Just plac ing a TBBLUE.TBU file on the root of the card won't up date the core; there are ad -
di tional steps you need to take. Let's ex am ine the two up date op tions below.

Regular Core update

The reg u lar core up date method is quite easy. Af ter you've made sure you have the
TBBLUE.FW and TBBLUE.TBU on the root folder of your card, press and hold U on your
key board and while do ing that, hit F1. Do not re lease the U key un til you see the fol low ing
screen:

Re lease U and then press Y. The updater will first cal cu late the checksum of the core
bistream; once it finds ev ery thing is OK, it will start up grad ing; first erashing the Flash
ROM and then, once done suc cess fully, writ ing the core bistream from TBBLUE.TBU in
its place. Once the pro ce dure has fin ished, you will re ceive an: Up dated! Turn the power
off and on. mes sage. Re move the power and if us ing an HDMI dis play, the dis play ca ble
as well. Wait a few mo ments and then re con nect ev ery thing. The ma chine should re start
with the new core.

AB Core update

If the pro cess failed some how; or if you're so in structed by the ac com pa ny ing notes of
your Sys tem/Next™ dis tri bu tion, you can do an AB core up date to rem edy the sit u a tion.
This is a bit more com pli cated and it's made so as to avoid en ter ing this mode by mistake.

To en ter AB core up date; you will need to power off your ma chine, then press and hold the
NMI and Drive but tons to gether (on the side of the com puter) and while do ing that re at -

334 ZX Spectrum Next – User Manual

Appendix C – Machine Personalities Regular Core update

Fig. 57 – Core update screen

Below you will may see references to function keys (F1… etc). These refer to PS/2
keyboard users. In order to press F1 on a ZX Spectrum Next keyboard you need to
press and hold the NMI button and then a numeric key on your keyboard. 1 is for F1, 2 is
for F2 and so forth all the way to 0 for F10.

tach the power ca ble. Wait a few mo ments then re lease both keys. You should see the fol -
low ing screen:

If the dis play is blank, press F3 on the key board. Note that due to AB core us ing the NMI
and Drive but tons you can not press F3 us ing the NMI + 3 short cut so you must have a
PS/2 key board for that.

The dis play could be blank be cause the AB core works at 60 Hz in VGA mode only so if
you dis play can not “lock” onto that mode and you have no PS/2 key board to at tach, you
will need to do a so-called “blind up date”. You can still press y and more than likely the up -
date will fin ish how ever if you have no dis play, the pre ferred method of per form ing said
up date is by press ing the NMI but ton once which in AB core up date is a short cut for y
while the Drive but ton is a short cut for n. If you do per form a “blind up date” you should al -
low the ma chine ad e quate time to fin ish. The av er age up date time is 2 ½ min utes from the
time you press y so al low about 4 min utes before turning the power off.

Multicore (Extra Cores) update

The Ex tra Cores up date deals with the op tional third party cores the ZX Spec trum Next ac -
cepts. The pro cess is sim i lar with two ex cep tions. You will need a file called CORExxx.BIT
where xxx is a num ber from 001 to 031 in stead of the TBBLUE.TBU placed in the root
folder of your Sys tem/Next™ dis tri bu tion and you en ter it by press ing and hold ing C in -
stead of U while in NextZXOS. Ev ery other step is ex actly the same. Your 3rd party core will
come with in struc tions on what to do and how to start the core. Gen er ally speak ing, files
spe cific to that core go un der the c:/ma chines/ folder, into one subfolder spe cific to that
core. So if, for ex am ple, a QL core was re leased, you would find all per ti nent files into
c:/machines/ql/.

Updating the firmware

In ZX Spec trum Next ter mi nol ogy, firmware is the file called TBBLUE.FW that's lo cated in
the root folder of the SD card that holds your Sys tem/Next™ dis tri bu tion. It is im pos si ble
to start the ma chine with out it, as it's a spe cial pro gram that configures all as pects of the
ma chine re gard less of per son al ity and core. To up date it, you only have to copy the new
ver sion over the pre vi ous TBBLUE.FW ver sion. The cur rent FW ver sion is re ported on the
boot screen. See Fig. 3 in Chap ter 1 to see how the core gets reported while booting.
Updating the System/Next™ distribution

Ev ery time a new ver sion of NextZXOS with ad di tional fea tures gets re leased, it gets
pushed to the Sys tem/Next git re pos i tory. Same thing hap pens with ev ery soft ware tool,
firm ware ver sion and core that adds some fea ture or fixes a bug. A new Sys tem/Next™
will get re leased in a com plete im age form only when enough com po nents have been up -

ZX Spectrum Next – User Manual 335

Multicore (Extra Cores) update Appendix C – Machine Personalities

Fig. 58 – AB Core update screen

dated as the pro cess is very time con sum ing and only a large enough up date on many
com po nents war rants this. So your sys tem up dates may be com plete (ie. re plac ing all the
com po nents in the sys tem in one go; firm ware, core, op er at ing sys tem AND sup port ing
tools) or just par tial. You can up date your Sys tem/Next™ dis tri bu tion par tially by go ing to
the git re pos i tory at: gitlab.com/thesmog358/tbblue/ down loading the in di vid ual com po -
nent and re plac ing it on your card. When up dat ing NextZXOS, re fer to Chap ter 20 to find
out which files are absolutely required because they all need to be updated together.

Al ter na tively you can choose to down load the en tire dis tri bu tion from git in one go by se -
lect ing the down load but ton on the right top part of the dis tri bu tion page.

If you do not feel ad ven tur ous how ever, the of fi cial home for the Sys tem/Next™ dis tri bu -
tion is: www.specnext.com/latestdistro/ which also con tains links to other forms of the
dis tri bu tion such as com plete SD card im ages in var i ous sizes for di rect burn ing onto SD
cards. Al ter na tively you have the op tion of pur chas ing a new SD card with the lat est dis tri -
bu tion on it from the SpecNext Ltd store.

Oth er wise, the proper way to up date is to down load the en tire dis tri bu tion from ei ther git or
the specnext link above, de com press it on a hard drive on a PC, Mac or Linux ma chine
and copy the en tire con tents over your card. This will erase your con fig u ra tion files and
your dis play choices so you will need to re peat the test screen pro ce dure you did when
you ini tially set up your machine.

Selecting and configuring a personality

When pow er ing up the sys tem, you're pre sented with the boot screen, where, as we saw in
Chap ter 1 you're pre sented with the op tion of en ter ing the Test Screen or to Press
SPACEBAR for Menu.

Press ing SPACE (be quick or the op tion will dis ap pear and boot ing will con tinue) will pres -
ent you with the fol low ing screen:

By us ing the cur sor keys and ENTER you can se lect a new per son al ity which will then be -
come your de fault one and all sub se quent boots will get you into that. Se lect ing how ever

336 ZX Spectrum Next – User Manual

Appendix C – Machine Personalities Selecting and configuring a personality

Fig. 59 – Personality Selection Screen

a per son al ity and press ing E will al low you to con fig ure the spe cific per son al ity fur ther. Do -
ing so will pres ent you with an other screen:

Mov ing over each op tion with the cur sor keys will pro vide (As seen in the fig ure above) a
help ful sum mary of what the op tion does.

There are a to tal of 13 per son al i ties avail able and a few more may be come avail able in a
fu ture up date pend ing on core changes, two of which are Na tive Next modes; one with the
stan dard 48K ROM and one with the Look ing Glass 48K ROM which has the dis tinc tive
ad van tage of nor mal typ ing in stead of tokenised en try. For Next Mode us age how ever
both these are func tion ally equiv a lent and both pro vide ac cess to dot commands in 48K
mode.

The So viet tim ings and TC2048 ones are the most id io syn cratic ones; the first op er at ing
only on 50Hz mode and was in cluded to al low ac cess to for mer East ern-block coun tries'
spe cially timed Spec trum Soft ware and the TC2048 be ing the Timex Por tu gal par tially
Spec trum Compatible machine.

An im por tant thing to re mem ber is that for com pat i bil ity rea sons the ex pan sion bus is by
de fault off; this does n't mean you can plug in in ter faces while the ma chine is work ing but
that you will not have ac cess to ex ter nal pe riph er als un less you ex plic itly al low it via a se -
ries of OUT com mands. This is to fa cil i tate the us age of the onboard pe riph er als and the
ex tra speed af forded by the Next's en hanced Z80n pro ces sor. All Next fea tures are avail -
able in ev ery mode un less you ex plic itly turn them off (so for ex am ple you need to turn off
Timex modes via Con fig u ra tion as above, if you don't want them) and you must in stall
esxDOS your selves (see rel e vant sec tion in Chap ter 20 on how to do that) in or der to ac -
cess the onboard divMMC. Re mem ber that the us age of ex ter nal pe riph er als will slow
down the ma chine per son al ity to the 3.5MHz speed and only the onboard pe riph er als
sup port the higher speeds. If you study Chap ter 23 and you know the spe cific ports your
hardware uses, you can enable it yourself with a few easy command sequences.

Stan dard Sinclair BASIC lacks the REG com mand, so as seen in Chap ter 23 you will have
to is sue a se ries of OUT com mands to en able ex ter nal pe riph er als. For ex am ple to en able
a ZX Printer (or Alphacom 32 or Timex Sinclair 2040) you will need to give:

OUT 9275, 136: OUT 9531, 219:

OUT 9275,128:OUT 9531,128

which dis ables the DACs on port FBh and im me di ately turns on the Ex pan sion Bus. (You
should how ever dis able it af ter wards so you can speed the ma chine up again).

ZX Spectrum Next – User Manual 337

Selecting and configuring a personality Appendix C – Machine Personalities

Fig. 60 – Configuration Options Screen

A slightly dif fer ent ex am ple is the fol low ing which en ables the In ter face 2. This time the rel -
e vant com mands are:

OUT 9275, 128:OUT 9531,8:

OUT 9275,2 : OUT 9531,1

which does things a bit dif fer ently; first we se lect NextREG 128 (80h) as be fore but this
time we send it a value 8 which, as you can see from Chap ter 23, is an in struc tion to en able
the Ex pan sion Bus af ter a soft re set and not im me di ately (set ting bit 4). The last two OUTs
are skipable be cause the soft re set they ini ti ate can also be done by tap ping on your
RESET but ton for less than 1 sec.

Troubleshooting

The Next team has taken ev ery pos si ble pre cau tion and mea sure in or der for your ZX
Spec trum Next to live for a long time; in ev i ta bly how ever prob lems do arise. These are
usu ally not re lated to the Next and the fol low ing para graphs will hope fully as sist you into
fig ur ing out quickly what po ten tially went wrong.

If your screen is blank
• Check that your cables are connected and that your display is on and switched

into that input and that your ZX Spectrum Next is powered.

• If the above are working check if you pressed F3 by mistake or the program
you're running has switched modes to a frequency your monitor doesn't support
(eg. 60Hz). Press F3 to switch frequencies.

• Verify you don't have a monitor that does 60Hz and you switched to Soviet
timings which only work at 50Hz. Reset the computer and press SPACE upon
start to change personalities

• If you have a DVI monitor verify that your converter is working. Many HDMI to
DVI converters do not work with the ZX Spectrum Next. Ask other users at the
SpecNext forums for tested converters.

• If you connect your ZX Spectrum Next to a TV or an older CRT monitor via
SCART, make sure that the line doubler feature is not turned on by mistake.
Attempt to remedy by pressing F2.

If you see a red screen
• Check the version of the core you're running if you see a message saying Core

3.xx.yy required and update your core.

• Check for a mismatched file versioning of NextZXOS. Prepare the SD card
anew.

• If the above are okay, replace your SD card with a new card and repeat the
process

If your PS/2 keyboard is not working
• Check of in configuration mode, the PS/2 mode is set to Keyboard. Core v.3.00

and later machines have this setting default to Mouse. If you want to use a
keyboard, change tjos to Keyboard and if you want to use both, you will need to
set this mode to Keyboard and purchase a Y-Splitter adapter, then plug the
keyboard in its appropriate socket.

Other things to look for

Other than the dis play not be ing able to sup port one of the dis play modes your ma chine
may be in (which is ap prox i mately 90% of the cases), the other things to look for is con nec -
tion/ca ble prob lems, SD card me dia fail ures or mis-con fig u ra tion. As a gen eral guide line,
we sug gest you first study the man ual in the rel e vant sec tions, and if you still can not fig ure
out the prob lem, ask for help in SpecNext's fo rums, our So cial Me dia ac counts and the
var i ous groups on line. If ev ery thing else fails, con tact SpecNext Ltd and we'll try to find you
a solution quickly!

338 ZX Spectrum Next – User Manual

Appendix C – Machine Personalities Troubleshooting

The Calculator

The Calculator

The ZX Spec trum Next can be used as a full func tion cal cu la tor.

Selecting the calculator

To use the cal cu la tor, call up the Startup Menu with EDIT and se lect the Cal cu la tor op tion.
(If you don't know how to se lect a menu op tion, re fer back to Chap ter 1.)

The cal cu la tor may be se lected as soon as the ZX Spec trum Next is switched on.

Al ter na tively, if you are work ing on a NextBASIC pro gram, you may se lect the cal cu la tor by
choos ing the Exit op tion from the Edit/Op tions Menu (which re turns you to the Main Menu),
at which point you can se lect the Cal cu la tor op tion. Note that any NextBASIC pro gram
which was be ing worked on (when you se lected the cal cu la tor) will be re mem bered and
re stored when you exit from the cal cu la tor and re turn to NextBASIC.

Entering numbers

When you have se lected the Cal cu la tor op tion, the screen will change to:

and the ZX Spec trum Next's cal cu la tor is ready to ac cept your first en try. Type in:

6+4

As soon as you press ENTER, the an swer 10 will ap pear on the next line. (Note that you
don't type = as you would on a con ven tional cal cu la tor.)

Running total

You will see that the cur sor is po si tioned to the right of the an swer, which is a run ning to tal
(like on a con ven tional cal cu la tor). This means that you can sim ply type in the next op er a -
tion to be car ried out on the run ning to tal (with out hav ing to type in a whole new cal cu la -
tion). So, with the cur sor still po si tioned to the right of the 10 on the screen, type in:

/5

and the an swer 2 ap pears.

Using built-in mathematical functions

The ZX Spec trum Next's cal cu la tor le ver ages the power of NextBASIC to pro vide more ad -
vanced func tions to the user. For ex am ple, with the re sult of the pre vi ous op er a tion in
place, type in:

Fig. 61 – Calculator Screen

*PI

This pro duces the re sult 6.2831853 on the screen. The ZX Spec trum Next has used its
built-in p func tion – all you had to do was type in PI. This ap plies to all the ZX Spec trum
Next's math e mat i cal func tions. To dem on strate, type in:

*ATN 60

which will give you the re sult 9.7648943.

Editing the screen

To fur ther en hance the cal cu la tor's flex i bil ity, you may also edit the con tents of the screen.
To dem on strate, move the cur sor (us ing the cur sor left key) to the be gin ning of the line
and then type in INT so that the line reads

INT 9.7648943

and as soon as ENTER is pressed, the an swer 9 will ap pear. This also dem on strates that
the ZX Spec trum Next does n't have to per form a cal cu la tion in or der to print the value of an
ex pres sion. As an other ex am ple, press ENTER and type:

1E6

which will re turn the value of that ex pres sion. No tice that be fore you typed in 1E6, you
pressed ENTER on its own – this tells the ZX Spec trum Next that you are about to start a
new cal cu la tion.

Assigning variables

One ex tremely use ful fea ture of the ZX Spec trum Next's cal cu la tor is that it al lows you to
as sign val ues to vari ables and then use them in sub se quent cal cu la tions. This is achieved
by us ing the LET state ment (as you would in NextBASIC). To dem on strate, press ENTER
and type in the following:

LET x=10

You must then press ENTER twice for the ZX Spec trum Next to ac cept the vari able as sign -
ment. Now ver ify that the vari able x is be ing used, by typ ing:

x+90

then
+x*x

If you are us ing the cal cu la tor whilst work ing on a NextBASIC pro gram, then any vari ables
used by the cal cu la tor should be cho sen so that they do not con flict with those used by the
pro gram it self. Note that NextBASIC keywords are not al lowed to be used as vari able
names.

User defined functions

Note that if you have set up any user de fined func tions (us ing the DEF FN state ment)
whilst work ing on a NextBASIC pro gram, you will be able to in voke that func tion when us -
ing the cal cu la tor. To il lus trate this point, re turn to NextBASIC and type in (for example):

9000 DEF FN c(n)=n*n*n

which sets up the user de fined func tion FN c(n) which re turns the cube of n (the num ber
you type into the pa ren the ses). Now exit from NextBASIC and re turn to the cal cu la tor – you
can now use this user de fined func tion as if it were one of the ZX Spec trum Next's own

ZX Spectrum Next – User Manual 341

Editing the screen Appendix D – The Calculator

built-in func tions. For ex am ple, enter:

FN c(3)

and the cal cu la tor will print the num ber 27 (i.e. the cube of 3).

Exiting from the calculator

When you have fin ished us ing the cal cu la tor, press the EDIT key. The screen will change
to:

Se lect the Exit op tion to re turn to the open ing menu. If you were work ing on a NextBASIC
pro gram be fore you started us ing the cal cu la tor, then you may re turn to the pro gram by
se lect ing the NextBASIC op tion. (If you wish to con tinue us ing the cal cu la tor, then se lect
the Cal cu la tor option).

342 ZX Spectrum Next – User Manual

Appendix D – The Calculator Exiting from the calculator

Fig. 62 – Calculator Options Menu

ZX Spectrum Next – User Manual 343

Table Of Contents

Ta ble of Con tents
Fore word 7
The early days . 7
The pre cur sor . 7
The Next is born . 8
The road to crowdfunding 8
It does in deed get se ri ous 9
Kickstarter rollercoaster 10
Stretch ing be yond the goals 10

1 - In tro duc tion 13
ZX Spec trum Next Stan dard 15
ZX Spec trum Next Plus 16
ZX Spec trum Next Ac cel er ated. 16

Set ting It Up 16
For Full Ma chines. 16
For ZX Spec trum Next Board-Only 16
What you’ll need 16
The Key board. 20
Spe cial keys and but tons. 21
The Startup Menu. 22
Menu Items . 23
En ter ing and us ing the NextBASIC Ed i tor 23
Dif fer ences from pre vi ous ver sions. 23
Other ed it ing keys and spe cial com bi na tions 24
NextBASIC Op tions Menu 25
The Screen . 26
The NextBASIC lan guage 26
Startup Se quence 29

2 - Ba sic Pro gram ming Con cepts 31
PRINT, LET, pro grams and line num bers 33
Vari ables and Ar rays 33
Us ing LIST, RUN and cursors to edit
and run pro grams 34
REM, NEW, INPUT and GO TO 35
Us ing STOP, BREAK and CONTINUE 35
Er ror trap ping . 39

3 - De ci sions 41
Us ing IF/THEN to make de ci sions 43
ELSE . 44

4 - Loop ing 45
Us ing FOR, TO and NEXT 47
STEP . 48
REPEAT ... REPEAT UNTIL loops 49
WHILE. 50
Er ror trap ping within
REPEAT … REPEAT UNTIL loops 51

5 - Pro ce dures and Sub rou tines 53
Branch ing us ing GO SUB and RETURN 55
LOCAL key word 56
Pro ce dures (DEFPROC / ENDPROC / PROC) 56
Local ised er ror-trap ping 59

6 - READ, DATA, RESTORE 61

7 - Ex pres sions 65
Math e mat i cal op er a tions +, - , * , /, MOD 66
Unary/Bitwise NOT (!) 66
In te ger bitwise, re la tional and log i cal op er a tors . . . 67

Bitwise op er a tors <<, >>, &, |, 67
Ex pres sions . 67
Vari able names and lim i ta tions 67
Sci en tific no ta tion 68
Dec i mal, Bi nary and Hex a dec i mal num bers 69
More about In te ger Ex pres sions and Vari ables . . . 70
Signed vs Un signed In te ger Ex pres sions 73

NextBASIC func tions within in te ger ex pres sions . . . 76

8 - Strings 77
String slic ing, us ing TO 79
Ex er cise . 80

9 - Func tions 81
String func tions – LEN, STR$ and VAL 82
Num ber func tions – SGN, ABS, INT and SQR 84
User de fined func tions us ing DEF and FN 84

10 - Math e mat i cal Func tions 87

 and EXP . 89
LN . 90
PI . 90
Trig o nom e try with SIN, COS, TAN, ASN,
ACS and ATN . 91

11 - Ran dom Num bers 93
RANDOMIZE, RND and % RND 95

12 - Ar rays 97
DIM . 99

13 - Con di tions 103
AND, OR and NOT 104

14 - The Char ac ter Set 107
CHR$ and CODE 108
The graphics sym bols. 108
BIN and USR . 109
POKE and PEEK 110
Al ter na tive Char ac ter Sets. 113
Char ac ter Graphics Mode. 113

15 - More about PRINT and INPUT 115
Co or di nate Sys tems. 116
Screen Modes and Pixel Co or di nates 116
Chang ing the size of char ac ters 117
Us ing AT to print to a cer tain lo ca tion. 117
Us ing POINT to print to a cer tain lo ca tion 120
SCREEN$. 123
TAB . 123
CLS . 124
Scroll ing . 124
Ex pand ing on INPUT 125
LINE in put . 126
Us ing Ex pres sions for INPUT 126
Us ing con trol codes with PRINT 127
INKEY$. 128

16 - Colours 129
An in tro duc tion to col our on the
ZX Spec trum Next 131
Ba sics of com puter col our 131
Col our or gani sa tion and rep re sen ta tion 131
Spa tial vs Col our Res o lu tion 131
Col our at trib ute dis play 134
Ex tended col our at trib ute dis play 136
Pal ette-based hy brid lin ear bitmapped
col our dis play . 137
Layer 3 col our stor age 138
Layer 2 pri or ity colours 138
More on the LAYER com mand 138
BORDER, PAPER, INK, BRIGHT and FLASH 140
BORDER. 142
INVERSE and OVER. 142
Us ing col our con trol codes 143
ATTR. 143

PALETTE. 144

17 - Graphics 149
PLOT. 150
DRAW and CIRCLE 151
POINT, POINT TO 153
Us ing OVER and INVERSE
with graphics com mands 153
Us ing stip pling pat terns to
gen er ate ad di tional colours 154
Quick erase and fill us ing LAYER ERASE. 155
Clip ping win dows 155
Til ing . 155

18 - Time and Mo tion 157
PAUSE. 159
Us ing POKE and PEEK at the Sys tem Vari ables . . 160
Re triev ing in for ma tion from the RTC 161
INKEY$. 162
An i ma tion: a quick primer 162
Mass Stor age Frame Play back 162
Mem ory Based Frame Play back 164
An i ma tion with the Sprite Sys tem 165
Cre at ing Sprites 165
Putt ing Sprites on Screen 167
An i mat ing Sprites 169
Mov ing Sprites on Screen. 171
Scroll ing . 172
The Cop per . 173

19 - Sound and Mu sic 177
Ba sic sounds with the BEEP com mand 179
En hanced Sound and Mu sic with PLAY 182
Us ing the PLAY com mand 182
Con struct ing strings 183
PLAY com mand sum mary 183
Set ting the pitch 183
Note du ra tion . 184
The N Com mand 186
Note vol ume . 186
Vol ume ef fects. 186
Tempo . 187
Re peated phrases. 187
The H com mand 188
Com ments. 188
Chan nel se lec tion 188
Ste reo con trol . 188
Dig i tal Au dio . 188
Us ing the Pi ac cel er a tor for au dio. 189
Ex ter nal Au dio Out put 190

20 - NextZXOS and al ter na tives 191
Guide to NextZXOS 192
NextZXOS main fea tures 192
Files, Drives, Par ti tions and Disks. 193
Work ing with files 193
File names . 194
LOAD . 195
SAVE. 198
VERIFY. 203
MERGE . 204
Us ing NextZXOS 205
Wildcards . 205
Filesystems . 205
Par ti tions. 206
Stor age de vices and disks 206
Mount ing . 207
Drive cat a logu ing 207
Drive, Folder and User
Area nav i ga tion and man age ment 211
MKDIR . 212

RMDIR . 213
CD . 213
PWD . 215
Man ag ing files and their at trib utes 215
COPY . 215
ERASE . 217
MOVE . 217
File at trib utes . 219
The RAMdisk . 220
Drive and Par ti tion Man age ment 221
CAT TAB and CAT ASN 221
MOVE ... IN, MOVE ... OUT and REMOUNT 222
Vir tual filesystem man age ment
.mkdata and .mkswap 223
Print ing . 223
The SPECTRUM com mand 224
Speed Con trol . 226
NextBASIC Ed i tor and Pro gram
sup port com mands 226
The Browser . 228
The Browser Win dow 228
Us ing the Browser. 229
Con fig ur ing the Browser 230
The Com mand Line 231
ROM Car tridge Load ers. 231
48K BASIC. 231
NMI Menu . 231
The NextZXOS folder struc ture 234
NextZXOS dot com mands 234
Mod i fy ing the startup – Autoexec.bas 235
CP/M. 236
Pre par ing your ZX Spec trum Next for esxDOS . . . 240

21 - Chan nels, Streams, Driv ers and Win dows241
Chan nels . 242
Streams . 244
Us ing Streams. 244
Stream con trol com mands 244
The Vari able and Mem ory Chan nels 247
Installable de vice driv ers and Driver Chan nels . . . 248
Driver Chan nel sup port 249
Win dows. 249
Sys tem Win dows vs User Win dows. 249
User char ac ter sets 252
Win dow in put . 252
Win dow def i ni tions 252

22 - Op tional Fea tures
(RTC, WIFI, RAM and Ac cel er a tor) 253
Over view. 255
Test ing the add-ons' in stal la tion 256
Us ing the Real Time Clock hard ware 259
Us ing the RTC to gether with the WiFi mod ule . . . 260
Us ing the rest of the add-ons 260

23 - IN, OUT and the Next Reg is ters 261
IN and OUT . 263
Hard ware ad dress de cod ing 263
The Next Reg is ters 266
Other port ad dresses 272
The ZX Spec trum Next Hard ware Ports List 273
The Ex pan sion Bus 274

24 - The Mem ory 275
Over view. 276
ROM and RAM 276
The Mem ory Map 276
Mem ory Man age ment. 277
Read ing and Writ ing to Mem ory 278
NextZXOS and NextBASIC mem ory al lo ca tion . . . 280
Mem ory Ar eas and their use 281

344 ZX Spectrum Next – User Manual

Table Of Contents

ZX Spectrum Next – User Manual 345

Table Of Contents

NextBASIC Data Struc tures 282
PEEK, POKE and their vari ants 284
CLEAR . 287
Mem ory Bank man age ment with BANK 288
Us ing BANK with graphics 290
Us ing BANK with files 293
Ex tend ing NextBASIC Pro grams with BANK 293
NextZXOS Pag ing Mech a nism Over view 294
MMU-Based Mem ory Man age ment 297
Layer 2 Bank Switch ing 297
Pag ing method in ter ac tions. 298
Pag ing out the ROM. 298

25 - The Sys tem Vari ables 299
Over view. 301
Sys tem Vari ables 301

26 - Us ing Ma chine Code 305
Us ing Ma chine Code 307
Us ing CLEAR to Make Space 307
Us ing USR to run ma chine code 308
Call ing NextZXOS from NextBASIC 309
Opcodes Pre fixes 312

A - Char ac ter Set, Z80N
Mne mon ics and Con trol Codes 313

B - Ref er ence 321
Re ports and Er ror Codes 322
Gen eral Er rors . 322
Stor age De vice Re lated Er rors 324

NextBASIC Keywords and Func tions 325
The Dec i mal Sys tem 329
The Bi nary Sys tem 329
The Hex a dec i mal Sys tem 329
Bits, Bytes and Words. 330
Us ing Bi nary and Hex in NextBASIC 330

C - Ma chine Per son al i ties, Up date,
Con fig u ra tion and Trou ble shoot ing 331
Over view. 333
The Cores and their up date pro ce dures 333
Reg u lar Core up date 334
AB Core up date 334
Multicore (Ex tra Cores) up date 335
Up dat ing the firm ware 335
Up dat ing the Sys tem/Next™ dis tri bu tion 335
Se lect ing and con fig ur ing a per son al ity 336
Trou ble shoot ing 338
Other things to look for 338

D - The Cal cu la tor 339
Se lect ing the cal cu la tor 340
En ter ing num bers 340
Run ning to tal . 340
Us ing built-in math e mat i cal func tions. 340
Ed it ing the screen 341
As sign ing vari ables 341
User de fined func tions 341
Ex it ing from the cal cu la tor. 342

	Table of Contents
	Inside Cover 1
	Book Information - 2
	Copyrights 4
	Dedication - Rick Dickinson 5
	Foreword 7
	The early days 7
	The precursor 7
	The Next is born 8
	The road to crowdfunding 8
	It does indeed get serious 9
	Kickstarter rollercoaster 10
	Stretching beyond the goals 10
	Acknowledgments 11

	Chapter 1 - Introduction 13
	ZX Spectrum Next Standard 15
	ZX Spectrum Next Plus 16
	ZX Spectrum Next Accelerated 16
	Setting It Up 16
	For Full Machines 16
	For ZX Spectrum Next Board-Only 16
	What you’ll need 16
	The Keyboard 20
	Special keys and buttons 21
	The Startup Menu 22
	Menu Items 23
	Entering and using the NextBASIC Editor 23
	Differences from previous versions 23
	Other editing keys and special combinations 24
	NextBASIC Options Menu 25
	The Screen 26
	The NextBASIC language 26
	Startup Sequence 29

	Chapter 2 - Basic Programming Concepts 31
	PRINT, LET, programs and line numbers 33
	Variables and Arrays 33
	Using LIST, RUN and cursors to edit
	REM, NEW, INPUT and GO TO 35
	Using STOP, BREAK and CONTINUE 35
	Error trapping 39

	Chapter 3 - Decisions 41
	Using IF/THEN to make decisions 43
	ELSE 44

	Chapter 4 - Looping 45
	Using FOR, TO and NEXT 47
	STEP 48
	REPEAT ... REPEAT UNTIL loops 49
	WHILE 50
	Error trapping within

	Chapter 5 - Procedures and Subroutines 53
	Branching using GO SUB and RETURN 55
	LOCAL keyword 56
	Procedures (DEFPROC / ENDPROC / PROC) 56
	Localised error-trapping 59

	Chapter 6 - READ, DATA, RESTORE 61
	Chapter 7 - Expressions 65
	Mathematical operations +, - , * , /, MOD 66
	Unary/Bitwise NOT (!) 66
	Integer bitwise, relational and logical operators 67
	Bitwise operators <<, >>, &, |, � 67
	Expressions 67
	Variable names and limitations 67
	Scientific notation 68
	Decimal, Binary and Hexadecimal numbers 69
	More about Integer Expressions and Variables 70
	Signed vs Unsigned Integer Expressions 73
	NextBASIC functions within integer expressions 76

	Chapter 8 - Strings 77
	String slicing, using TO 79
	Exercise 80

	Chapter 9 - Functions 81
	String functions – LEN, STR$ and VAL 82
	Number functions – SGN, ABS, INT and SQR 84
	User defined functions using DEF and FN 84

	Chapter 10 - Mathematical Functions 87
	^ and EXP 89
	LN 90
	PI 90
	Trigonometry with SIN, COS, TAN, ASN,

	Chapter 11 - Random Numbers 93
	RANDOMIZE, RND and % RND 95

	Chapter 12 - Arrays 97
	DIM 99

	Chapter 13 - Conditions 103
	AND, OR and NOT 104

	Chapter 14 - The Character Set 107
	CHR$ and CODE 108
	The graphics symbols 108
	BIN and USR 109
	POKE and PEEK 110
	Alternative Character Sets 113
	Character Graphics Mode 113

	Chapter 15 - More about PRINT and INPUT 115
	Coordinate Systems 116
	Screen Modes and Pixel Coordinates 116
	Changing the size of characters 117
	Using AT to print to a certain location 117
	Using POINT to print to a certain location 120
	SCREEN$ 123
	TAB 123
	CLS 124
	Scrolling 124
	Expanding on INPUT 125
	LINE input 126
	Using Expressions for INPUT 126
	Using control codes with PRINT 127
	INKEY$ 128

	Chapter 16 - Colours 129
	An introduction to colour on the
	Basics of computer colour 131
	Colour organisation and representation 131
	Spatial vs Colour Resolution 131
	Colour attribute display 134
	Extended colour attribute display 136
	Palette-based hybrid linear bitmapped
	Layer 3 colour storage 138
	Layer 2 priority colours 138
	More on the LAYER command 138
	BORDER, PAPER, INK, BRIGHT and FLASH 140
	BORDER 142
	INVERSE and OVER 142
	Using colour control codes 143
	ATTR 143
	PALETTE 144

	Chapter 17 - Graphics 149
	PLOT 150
	DRAW and CIRCLE 151
	POINT, POINT TO 153
	Using OVER and INVERSE
	Using stippling patterns to
	Quick erase and fill using LAYER ERASE 155
	Clipping windows 155
	Tiling 155

	Chapter 18 - Time and Motion 157
	PAUSE 159
	Using POKE and PEEK at the System Variables 160
	Retrieving information from the RTC 161
	INKEY$ 162
	Animation: a quick primer 162
	Mass Storage Frame Playback 162
	Memory Based Frame Playback 164
	Animation with the Sprite System 165
	Creating Sprites 165
	Putting Sprites on Screen 167
	Animating Sprites 169
	Moving Sprites on Screen 171
	Scrolling 172
	The Copper 173

	Chapter 19 - Sound and Music 177
	Basic sounds with the BEEP command 179
	Enhanced Sound and Music with PLAY 182
	Using the PLAY command 182
	Constructing strings 183
	PLAY command summary 183
	Setting the pitch 183
	Note duration 184
	The N Command 186
	Note volume 186
	Volume effects 186
	Tempo 187
	Repeated phrases 187
	The H command 188
	Comments 188
	Channel selection 188
	Stereo control 188
	Digital Audio 188
	Using the Pi accelerator for audio 189
	External Audio Output 190

	Chapter 20 - NextZXOS and alternatives 191
	Guide to NextZXOS 192
	NextZXOS main features 192
	Files, Drives, Partitions and Disks 193
	Working with files 193
	Filenames 194
	LOAD 195
	SAVE 198
	VERIFY 203
	MERGE 204
	Using NextZXOS 205
	Wildcards 205
	Filesystems 205
	Partitions 206
	Storage devices and disks 206
	Mounting 207
	Drive cataloguing 207
	Drive, Folder and User Area navigation and management 211
	MKDIR 212
	RMDIR 213
	CD 213
	PWD 215
	Managing files and their attributes 215
	COPY 215
	ERASE 217
	MOVE 217
	File attributes 219
	The RAMdisk 220
	Drive and Partition Management 221
	CAT TAB and CAT ASN 221
	MOVE ... IN, MOVE ... OUT and REMOUNT 222
	Virtual filesystem management
	Printing 223
	The SPECTRUM command 224
	Speed Control 226
	NextBASIC Editor and Program
	The Browser 228
	The Browser Window 228
	Using the Browser 229
	Configuring the Browser 230
	The Command Line 231
	ROM Cartridge Loaders 231
	48K BASIC 231
	NMI Menu 231
	The NextZXOS folder structure 234
	NextZXOS dot commands 234
	Modifying the startup – Autoexec.bas 235

	CP/M 236
	Preparing your ZX Spectrum Next for esxDOS 240

	Chapter 21 - Channels, Streams, Drivers and Windows 241
	Channels 242
	Streams 244
	Using Streams 244
	Stream control commands 244

	The Variable and Memory Channels 247
	Installable device drivers and Driver Channels 248
	Driver Channel support 249
	Windows 249
	System Windows vs User Windows 249
	User character sets 252
	Window input 252
	Window definitions 252

	Chapter 22 - Optional Features (RTC, WIFI, RAM and Accelerator) 253
	Overview 255
	Testing the add-ons' installation 256
	Using the Real Time Clock hardware 259
	Using the RTC together with the WiFi module 260
	Using the rest of the add-ons 260

	Chapter 23 - IN, OUT and the Next Registers 261
	IN and OUT 263
	Hardware address decoding 263
	The Next Registers 266
	Other port addresses 272
	The ZX Spectrum Next Hardware Ports List 273
	The Expansion Bus 274

	Chapter 24 - The Memory 275
	Overview 276
	ROM and RAM 276
	The Memory Map 276
	Memory Management 277
	Reading and Writing to Memory 278
	NextZXOS and NextBASIC memory allocation 280
	Memory Areas and their use 281
	NextBASIC Data Structures 282
	PEEK, POKE and their variants 284
	CLEAR 287
	Memory Bank management with BANK 288
	Using BANK with graphics 290
	Using BANK with files 293
	Extending NextBASIC Programs with BANK 293
	NextZXOS Paging Mechanism Overview 294
	MMU-Based Memory Management 297
	Layer 2 Bank Switching 297
	Paging method interactions 298
	Paging out the ROM 298

	Chapter 25 - The System Variables 299
	Overview 301
	System Variables 301

	Chapter 26 - Using Machine Code 305
	Using Machine Code 307
	Using CLEAR to Make Space 307
	Using USR to run machine code 308
	Calling NextZXOS from NextBASIC 309
	Opcodes Prefixes 312

	Appendix A - Character Set, Z80NMnemonics and Control Codes 313
	Appendix B - Reference 321
	Reports and Error Codes 322
	General Errors 322
	Storage Device Related Errors 324
	NextBASIC Keywords and Functions 325
	The Decimal System 329
	The Binary System 329
	The Hexadecimal System 329
	Bits, Bytes and Words 330
	Using Binary and Hex in NextBASIC 330

	Appendix C - Machine Personalities, Update, Configuration and Troubleshooting 331
	Overview 333
	The Cores and their update procedures 333
	Regular Core update 334
	AB Core update 334
	Multicore (Extra Cores) update 335
	Updating the firmware 335
	Updating the System/Next™ distribution 335
	Selecting and configuring a personality 336
	Troubleshooting 338
	Other things to look for 338

	Appendix D - The Calculator 339
	Selecting the calculator 340
	Entering numbers 340
	Running total 340
	Using built-in mathematical functions 340
	Editing the screen 341
	Assigning variables 341
	User defined functions 341
	Exiting from the calculator 342

